Description: Minimal universes are closed under singletons. (Contributed by Rohan Ridenour, 13-Aug-2023)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | mnusnd.1 | |- M = { k | A. l e. k ( ~P l C_ k /\ A. m E. n e. k ( ~P l C_ n /\ A. p e. l ( E. q e. k ( p e. q /\ q e. m ) -> E. r e. m ( p e. r /\ U. r C_ n ) ) ) ) } |
|
| mnusnd.2 | |- ( ph -> U e. M ) |
||
| mnusnd.3 | |- ( ph -> A e. U ) |
||
| Assertion | mnusnd | |- ( ph -> { A } e. U ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mnusnd.1 | |- M = { k | A. l e. k ( ~P l C_ k /\ A. m E. n e. k ( ~P l C_ n /\ A. p e. l ( E. q e. k ( p e. q /\ q e. m ) -> E. r e. m ( p e. r /\ U. r C_ n ) ) ) ) } |
|
| 2 | mnusnd.2 | |- ( ph -> U e. M ) |
|
| 3 | mnusnd.3 | |- ( ph -> A e. U ) |
|
| 4 | 1 2 3 | mnupwd | |- ( ph -> ~P A e. U ) |
| 5 | snsspw | |- { A } C_ ~P A |
|
| 6 | 5 | a1i | |- ( ph -> { A } C_ ~P A ) |
| 7 | 1 2 4 6 | mnussd | |- ( ph -> { A } e. U ) |