Metamath Proof Explorer


Theorem mnusnd

Description: Minimal universes are closed under singletons. (Contributed by Rohan Ridenour, 13-Aug-2023)

Ref Expression
Hypotheses mnusnd.1
|- M = { k | A. l e. k ( ~P l C_ k /\ A. m E. n e. k ( ~P l C_ n /\ A. p e. l ( E. q e. k ( p e. q /\ q e. m ) -> E. r e. m ( p e. r /\ U. r C_ n ) ) ) ) }
mnusnd.2
|- ( ph -> U e. M )
mnusnd.3
|- ( ph -> A e. U )
Assertion mnusnd
|- ( ph -> { A } e. U )

Proof

Step Hyp Ref Expression
1 mnusnd.1
 |-  M = { k | A. l e. k ( ~P l C_ k /\ A. m E. n e. k ( ~P l C_ n /\ A. p e. l ( E. q e. k ( p e. q /\ q e. m ) -> E. r e. m ( p e. r /\ U. r C_ n ) ) ) ) }
2 mnusnd.2
 |-  ( ph -> U e. M )
3 mnusnd.3
 |-  ( ph -> A e. U )
4 1 2 3 mnupwd
 |-  ( ph -> ~P A e. U )
5 snsspw
 |-  { A } C_ ~P A
6 5 a1i
 |-  ( ph -> { A } C_ ~P A )
7 1 2 4 6 mnussd
 |-  ( ph -> { A } e. U )