| Step |
Hyp |
Ref |
Expression |
| 1 |
|
fconst2g |
⊢ ( 𝐵 ∈ 𝑉 → ( 𝑓 : 𝐴 ⟶ { 𝐵 } ↔ 𝑓 = ( 𝐴 × { 𝐵 } ) ) ) |
| 2 |
1
|
biimpd |
⊢ ( 𝐵 ∈ 𝑉 → ( 𝑓 : 𝐴 ⟶ { 𝐵 } → 𝑓 = ( 𝐴 × { 𝐵 } ) ) ) |
| 3 |
|
fconst2g |
⊢ ( 𝐵 ∈ 𝑉 → ( 𝑔 : 𝐴 ⟶ { 𝐵 } ↔ 𝑔 = ( 𝐴 × { 𝐵 } ) ) ) |
| 4 |
3
|
biimpd |
⊢ ( 𝐵 ∈ 𝑉 → ( 𝑔 : 𝐴 ⟶ { 𝐵 } → 𝑔 = ( 𝐴 × { 𝐵 } ) ) ) |
| 5 |
|
eqtr3 |
⊢ ( ( 𝑓 = ( 𝐴 × { 𝐵 } ) ∧ 𝑔 = ( 𝐴 × { 𝐵 } ) ) → 𝑓 = 𝑔 ) |
| 6 |
5
|
a1i |
⊢ ( 𝐵 ∈ 𝑉 → ( ( 𝑓 = ( 𝐴 × { 𝐵 } ) ∧ 𝑔 = ( 𝐴 × { 𝐵 } ) ) → 𝑓 = 𝑔 ) ) |
| 7 |
2 4 6
|
syl2and |
⊢ ( 𝐵 ∈ 𝑉 → ( ( 𝑓 : 𝐴 ⟶ { 𝐵 } ∧ 𝑔 : 𝐴 ⟶ { 𝐵 } ) → 𝑓 = 𝑔 ) ) |
| 8 |
7
|
alrimivv |
⊢ ( 𝐵 ∈ 𝑉 → ∀ 𝑓 ∀ 𝑔 ( ( 𝑓 : 𝐴 ⟶ { 𝐵 } ∧ 𝑔 : 𝐴 ⟶ { 𝐵 } ) → 𝑓 = 𝑔 ) ) |
| 9 |
|
feq1 |
⊢ ( 𝑓 = 𝑔 → ( 𝑓 : 𝐴 ⟶ { 𝐵 } ↔ 𝑔 : 𝐴 ⟶ { 𝐵 } ) ) |
| 10 |
9
|
mo4 |
⊢ ( ∃* 𝑓 𝑓 : 𝐴 ⟶ { 𝐵 } ↔ ∀ 𝑓 ∀ 𝑔 ( ( 𝑓 : 𝐴 ⟶ { 𝐵 } ∧ 𝑔 : 𝐴 ⟶ { 𝐵 } ) → 𝑓 = 𝑔 ) ) |
| 11 |
8 10
|
sylibr |
⊢ ( 𝐵 ∈ 𝑉 → ∃* 𝑓 𝑓 : 𝐴 ⟶ { 𝐵 } ) |