Metamath Proof Explorer


Theorem eufsn2

Description: There is exactly one function into a singleton, assuming ax-pow and ax-un . Variant of eufsn . If existence is not needed, use mofsn or mofsn2 for fewer axiom assumptions. (Contributed by Zhi Wang, 19-Sep-2024)

Ref Expression
Hypotheses eufsn.1 ( 𝜑𝐵𝑊 )
eufsn.2 ( 𝜑𝐴𝑉 )
Assertion eufsn2 ( 𝜑 → ∃! 𝑓 𝑓 : 𝐴 ⟶ { 𝐵 } )

Proof

Step Hyp Ref Expression
1 eufsn.1 ( 𝜑𝐵𝑊 )
2 eufsn.2 ( 𝜑𝐴𝑉 )
3 snex { 𝐵 } ∈ V
4 xpexg ( ( 𝐴𝑉 ∧ { 𝐵 } ∈ V ) → ( 𝐴 × { 𝐵 } ) ∈ V )
5 2 3 4 sylancl ( 𝜑 → ( 𝐴 × { 𝐵 } ) ∈ V )
6 1 5 eufsnlem ( 𝜑 → ∃! 𝑓 𝑓 : 𝐴 ⟶ { 𝐵 } )