Description: There is exactly one function into a singleton, assuming ax-pow and ax-un . Variant of eufsn . If existence is not needed, use mofsn or mofsn2 for fewer axiom assumptions. (Contributed by Zhi Wang, 19-Sep-2024)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | eufsn.1 | |- ( ph -> B e. W ) |
|
| eufsn.2 | |- ( ph -> A e. V ) |
||
| Assertion | eufsn2 | |- ( ph -> E! f f : A --> { B } ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eufsn.1 | |- ( ph -> B e. W ) |
|
| 2 | eufsn.2 | |- ( ph -> A e. V ) |
|
| 3 | snex | |- { B } e. _V |
|
| 4 | xpexg | |- ( ( A e. V /\ { B } e. _V ) -> ( A X. { B } ) e. _V ) |
|
| 5 | 2 3 4 | sylancl | |- ( ph -> ( A X. { B } ) e. _V ) |
| 6 | 1 5 | eufsnlem | |- ( ph -> E! f f : A --> { B } ) |