Metamath Proof Explorer


Theorem eufsnlem

Description: There is exactly one function into a singleton. For a simpler hypothesis, see eufsn assuming ax-rep , or eufsn2 assuming ax-pow and ax-un . (Contributed by Zhi Wang, 19-Sep-2024)

Ref Expression
Hypotheses eufsn.1
|- ( ph -> B e. W )
eufsnlem.2
|- ( ph -> ( A X. { B } ) e. V )
Assertion eufsnlem
|- ( ph -> E! f f : A --> { B } )

Proof

Step Hyp Ref Expression
1 eufsn.1
 |-  ( ph -> B e. W )
2 eufsnlem.2
 |-  ( ph -> ( A X. { B } ) e. V )
3 fconst2g
 |-  ( B e. W -> ( f : A --> { B } <-> f = ( A X. { B } ) ) )
4 1 3 syl
 |-  ( ph -> ( f : A --> { B } <-> f = ( A X. { B } ) ) )
5 4 alrimiv
 |-  ( ph -> A. f ( f : A --> { B } <-> f = ( A X. { B } ) ) )
6 eqeq2
 |-  ( g = ( A X. { B } ) -> ( f = g <-> f = ( A X. { B } ) ) )
7 6 bibi2d
 |-  ( g = ( A X. { B } ) -> ( ( f : A --> { B } <-> f = g ) <-> ( f : A --> { B } <-> f = ( A X. { B } ) ) ) )
8 7 albidv
 |-  ( g = ( A X. { B } ) -> ( A. f ( f : A --> { B } <-> f = g ) <-> A. f ( f : A --> { B } <-> f = ( A X. { B } ) ) ) )
9 2 5 8 spcedv
 |-  ( ph -> E. g A. f ( f : A --> { B } <-> f = g ) )
10 eu6im
 |-  ( E. g A. f ( f : A --> { B } <-> f = g ) -> E! f f : A --> { B } )
11 9 10 syl
 |-  ( ph -> E! f f : A --> { B } )