| Step |
Hyp |
Ref |
Expression |
| 1 |
|
eufsn.1 |
|- ( ph -> B e. W ) |
| 2 |
|
eufsnlem.2 |
|- ( ph -> ( A X. { B } ) e. V ) |
| 3 |
|
fconst2g |
|- ( B e. W -> ( f : A --> { B } <-> f = ( A X. { B } ) ) ) |
| 4 |
1 3
|
syl |
|- ( ph -> ( f : A --> { B } <-> f = ( A X. { B } ) ) ) |
| 5 |
4
|
alrimiv |
|- ( ph -> A. f ( f : A --> { B } <-> f = ( A X. { B } ) ) ) |
| 6 |
|
eqeq2 |
|- ( g = ( A X. { B } ) -> ( f = g <-> f = ( A X. { B } ) ) ) |
| 7 |
6
|
bibi2d |
|- ( g = ( A X. { B } ) -> ( ( f : A --> { B } <-> f = g ) <-> ( f : A --> { B } <-> f = ( A X. { B } ) ) ) ) |
| 8 |
7
|
albidv |
|- ( g = ( A X. { B } ) -> ( A. f ( f : A --> { B } <-> f = g ) <-> A. f ( f : A --> { B } <-> f = ( A X. { B } ) ) ) ) |
| 9 |
2 5 8
|
spcedv |
|- ( ph -> E. g A. f ( f : A --> { B } <-> f = g ) ) |
| 10 |
|
eu6im |
|- ( E. g A. f ( f : A --> { B } <-> f = g ) -> E! f f : A --> { B } ) |
| 11 |
9 10
|
syl |
|- ( ph -> E! f f : A --> { B } ) |