Description: An inference based on modus ponens. (Contributed by NM, 19-Oct-2007)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | mp3anr3.1 | ⊢ 𝜃 | |
| mp3anr3.2 | ⊢ ( ( 𝜑 ∧ ( 𝜓 ∧ 𝜒 ∧ 𝜃 ) ) → 𝜏 ) | ||
| Assertion | mp3anr3 | ⊢ ( ( 𝜑 ∧ ( 𝜓 ∧ 𝜒 ) ) → 𝜏 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mp3anr3.1 | ⊢ 𝜃 | |
| 2 | mp3anr3.2 | ⊢ ( ( 𝜑 ∧ ( 𝜓 ∧ 𝜒 ∧ 𝜃 ) ) → 𝜏 ) | |
| 3 | 2 | ancoms | ⊢ ( ( ( 𝜓 ∧ 𝜒 ∧ 𝜃 ) ∧ 𝜑 ) → 𝜏 ) |
| 4 | 1 3 | mp3anl3 | ⊢ ( ( ( 𝜓 ∧ 𝜒 ) ∧ 𝜑 ) → 𝜏 ) |
| 5 | 4 | ancoms | ⊢ ( ( 𝜑 ∧ ( 𝜓 ∧ 𝜒 ) ) → 𝜏 ) |