Metamath Proof Explorer


Theorem mreexfidimd

Description: In a Moore system whose closure operator has the exchange property, if two independent sets have equal closure and one is finite, then they are equinumerous. Proven by using mreexdomd twice. This implies a special case of Theorem 4.2.2 in FaureFrolicher p. 87. (Contributed by David Moews, 1-May-2017)

Ref Expression
Hypotheses mreexfidimd.1 ( 𝜑𝐴 ∈ ( Moore ‘ 𝑋 ) )
mreexfidimd.2 𝑁 = ( mrCls ‘ 𝐴 )
mreexfidimd.3 𝐼 = ( mrInd ‘ 𝐴 )
mreexfidimd.4 ( 𝜑 → ∀ 𝑠 ∈ 𝒫 𝑋𝑦𝑋𝑧 ∈ ( ( 𝑁 ‘ ( 𝑠 ∪ { 𝑦 } ) ) ∖ ( 𝑁𝑠 ) ) 𝑦 ∈ ( 𝑁 ‘ ( 𝑠 ∪ { 𝑧 } ) ) )
mreexfidimd.5 ( 𝜑𝑆𝐼 )
mreexfidimd.6 ( 𝜑𝑇𝐼 )
mreexfidimd.7 ( 𝜑𝑆 ∈ Fin )
mreexfidimd.8 ( 𝜑 → ( 𝑁𝑆 ) = ( 𝑁𝑇 ) )
Assertion mreexfidimd ( 𝜑𝑆𝑇 )

Proof

Step Hyp Ref Expression
1 mreexfidimd.1 ( 𝜑𝐴 ∈ ( Moore ‘ 𝑋 ) )
2 mreexfidimd.2 𝑁 = ( mrCls ‘ 𝐴 )
3 mreexfidimd.3 𝐼 = ( mrInd ‘ 𝐴 )
4 mreexfidimd.4 ( 𝜑 → ∀ 𝑠 ∈ 𝒫 𝑋𝑦𝑋𝑧 ∈ ( ( 𝑁 ‘ ( 𝑠 ∪ { 𝑦 } ) ) ∖ ( 𝑁𝑠 ) ) 𝑦 ∈ ( 𝑁 ‘ ( 𝑠 ∪ { 𝑧 } ) ) )
5 mreexfidimd.5 ( 𝜑𝑆𝐼 )
6 mreexfidimd.6 ( 𝜑𝑇𝐼 )
7 mreexfidimd.7 ( 𝜑𝑆 ∈ Fin )
8 mreexfidimd.8 ( 𝜑 → ( 𝑁𝑆 ) = ( 𝑁𝑇 ) )
9 3 1 5 mrissd ( 𝜑𝑆𝑋 )
10 1 2 9 mrcssidd ( 𝜑𝑆 ⊆ ( 𝑁𝑆 ) )
11 10 8 sseqtrd ( 𝜑𝑆 ⊆ ( 𝑁𝑇 ) )
12 3 1 6 mrissd ( 𝜑𝑇𝑋 )
13 7 orcd ( 𝜑 → ( 𝑆 ∈ Fin ∨ 𝑇 ∈ Fin ) )
14 1 2 3 4 11 12 13 5 mreexdomd ( 𝜑𝑆𝑇 )
15 1 2 12 mrcssidd ( 𝜑𝑇 ⊆ ( 𝑁𝑇 ) )
16 15 8 sseqtrrd ( 𝜑𝑇 ⊆ ( 𝑁𝑆 ) )
17 7 olcd ( 𝜑 → ( 𝑇 ∈ Fin ∨ 𝑆 ∈ Fin ) )
18 1 2 3 4 16 9 17 6 mreexdomd ( 𝜑𝑇𝑆 )
19 sbth ( ( 𝑆𝑇𝑇𝑆 ) → 𝑆𝑇 )
20 14 18 19 syl2anc ( 𝜑𝑆𝑇 )