Database
BASIC STRUCTURES
Moore spaces
Independent sets in a Moore system
mreexfidimd
Metamath Proof Explorer
Description: In a Moore system whose closure operator has the exchange property, if
two independent sets have equal closure and one is finite, then they are
equinumerous. Proven by using mreexdomd twice. This implies a
special case of Theorem 4.2.2 in FaureFrolicher p. 87. (Contributed by David Moews , 1-May-2017)
Ref
Expression
Hypotheses
mreexfidimd.1
⊢ ( 𝜑 → 𝐴 ∈ ( Moore ‘ 𝑋 ) )
mreexfidimd.2
⊢ 𝑁 = ( mrCls ‘ 𝐴 )
mreexfidimd.3
⊢ 𝐼 = ( mrInd ‘ 𝐴 )
mreexfidimd.4
⊢ ( 𝜑 → ∀ 𝑠 ∈ 𝒫 𝑋 ∀ 𝑦 ∈ 𝑋 ∀ 𝑧 ∈ ( ( 𝑁 ‘ ( 𝑠 ∪ { 𝑦 } ) ) ∖ ( 𝑁 ‘ 𝑠 ) ) 𝑦 ∈ ( 𝑁 ‘ ( 𝑠 ∪ { 𝑧 } ) ) )
mreexfidimd.5
⊢ ( 𝜑 → 𝑆 ∈ 𝐼 )
mreexfidimd.6
⊢ ( 𝜑 → 𝑇 ∈ 𝐼 )
mreexfidimd.7
⊢ ( 𝜑 → 𝑆 ∈ Fin )
mreexfidimd.8
⊢ ( 𝜑 → ( 𝑁 ‘ 𝑆 ) = ( 𝑁 ‘ 𝑇 ) )
Assertion
mreexfidimd
⊢ ( 𝜑 → 𝑆 ≈ 𝑇 )
Proof
Step
Hyp
Ref
Expression
1
mreexfidimd.1
⊢ ( 𝜑 → 𝐴 ∈ ( Moore ‘ 𝑋 ) )
2
mreexfidimd.2
⊢ 𝑁 = ( mrCls ‘ 𝐴 )
3
mreexfidimd.3
⊢ 𝐼 = ( mrInd ‘ 𝐴 )
4
mreexfidimd.4
⊢ ( 𝜑 → ∀ 𝑠 ∈ 𝒫 𝑋 ∀ 𝑦 ∈ 𝑋 ∀ 𝑧 ∈ ( ( 𝑁 ‘ ( 𝑠 ∪ { 𝑦 } ) ) ∖ ( 𝑁 ‘ 𝑠 ) ) 𝑦 ∈ ( 𝑁 ‘ ( 𝑠 ∪ { 𝑧 } ) ) )
5
mreexfidimd.5
⊢ ( 𝜑 → 𝑆 ∈ 𝐼 )
6
mreexfidimd.6
⊢ ( 𝜑 → 𝑇 ∈ 𝐼 )
7
mreexfidimd.7
⊢ ( 𝜑 → 𝑆 ∈ Fin )
8
mreexfidimd.8
⊢ ( 𝜑 → ( 𝑁 ‘ 𝑆 ) = ( 𝑁 ‘ 𝑇 ) )
9
3 1 5
mrissd
⊢ ( 𝜑 → 𝑆 ⊆ 𝑋 )
10
1 2 9
mrcssidd
⊢ ( 𝜑 → 𝑆 ⊆ ( 𝑁 ‘ 𝑆 ) )
11
10 8
sseqtrd
⊢ ( 𝜑 → 𝑆 ⊆ ( 𝑁 ‘ 𝑇 ) )
12
3 1 6
mrissd
⊢ ( 𝜑 → 𝑇 ⊆ 𝑋 )
13
7
orcd
⊢ ( 𝜑 → ( 𝑆 ∈ Fin ∨ 𝑇 ∈ Fin ) )
14
1 2 3 4 11 12 13 5
mreexdomd
⊢ ( 𝜑 → 𝑆 ≼ 𝑇 )
15
1 2 12
mrcssidd
⊢ ( 𝜑 → 𝑇 ⊆ ( 𝑁 ‘ 𝑇 ) )
16
15 8
sseqtrrd
⊢ ( 𝜑 → 𝑇 ⊆ ( 𝑁 ‘ 𝑆 ) )
17
7
olcd
⊢ ( 𝜑 → ( 𝑇 ∈ Fin ∨ 𝑆 ∈ Fin ) )
18
1 2 3 4 16 9 17 6
mreexdomd
⊢ ( 𝜑 → 𝑇 ≼ 𝑆 )
19
sbth
⊢ ( ( 𝑆 ≼ 𝑇 ∧ 𝑇 ≼ 𝑆 ) → 𝑆 ≈ 𝑇 )
20
14 18 19
syl2anc
⊢ ( 𝜑 → 𝑆 ≈ 𝑇 )