Metamath Proof Explorer
		
		
		
		Description:  A nonzero square is positive.  Theorem I.20 of Apostol p. 20.
       (Contributed by NM, 17-Jan-1997)  (Revised by Mario Carneiro, 27-May-2016)
		
			
				
					 | 
					 | 
					Ref | 
					Expression | 
				
					
						 | 
						Hypothesis | 
						lt2.1 | 
						⊢ 𝐴  ∈  ℝ  | 
					
				
					 | 
					Assertion | 
					msqgt0i | 
					⊢  ( 𝐴  ≠  0  →  0  <  ( 𝐴  ·  𝐴 ) )  | 
				
			
		
		
			
				Proof
				
					
						| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							lt2.1 | 
							⊢ 𝐴  ∈  ℝ  | 
						
						
							| 2 | 
							
								
							 | 
							msqgt0 | 
							⊢ ( ( 𝐴  ∈  ℝ  ∧  𝐴  ≠  0 )  →  0  <  ( 𝐴  ·  𝐴 ) )  | 
						
						
							| 3 | 
							
								1 2
							 | 
							mpan | 
							⊢ ( 𝐴  ≠  0  →  0  <  ( 𝐴  ·  𝐴 ) )  |