| Step | Hyp | Ref | Expression | 
						
							| 1 |  | mulsval | ⊢ ( ( 𝐴  ∈   No   ∧  𝐵  ∈   No  )  →  ( 𝐴  ·s  𝐵 )  =  ( ( { 𝑒  ∣  ∃ 𝑓  ∈  (  L  ‘ 𝐴 ) ∃ 𝑔  ∈  (  L  ‘ 𝐵 ) 𝑒  =  ( ( ( 𝑓  ·s  𝐵 )  +s  ( 𝐴  ·s  𝑔 ) )  -s  ( 𝑓  ·s  𝑔 ) ) }  ∪  { ℎ  ∣  ∃ 𝑖  ∈  (  R  ‘ 𝐴 ) ∃ 𝑘  ∈  (  R  ‘ 𝐵 ) ℎ  =  ( ( ( 𝑖  ·s  𝐵 )  +s  ( 𝐴  ·s  𝑘 ) )  -s  ( 𝑖  ·s  𝑘 ) ) } )  |s  ( { 𝑙  ∣  ∃ 𝑚  ∈  (  L  ‘ 𝐴 ) ∃ 𝑛  ∈  (  R  ‘ 𝐵 ) 𝑙  =  ( ( ( 𝑚  ·s  𝐵 )  +s  ( 𝐴  ·s  𝑛 ) )  -s  ( 𝑚  ·s  𝑛 ) ) }  ∪  { 𝑜  ∣  ∃ 𝑥  ∈  (  R  ‘ 𝐴 ) ∃ 𝑦  ∈  (  L  ‘ 𝐵 ) 𝑜  =  ( ( ( 𝑥  ·s  𝐵 )  +s  ( 𝐴  ·s  𝑦 ) )  -s  ( 𝑥  ·s  𝑦 ) ) } ) ) ) | 
						
							| 2 |  | mulsval2lem | ⊢ { 𝑎  ∣  ∃ 𝑝  ∈  (  L  ‘ 𝐴 ) ∃ 𝑞  ∈  (  L  ‘ 𝐵 ) 𝑎  =  ( ( ( 𝑝  ·s  𝐵 )  +s  ( 𝐴  ·s  𝑞 ) )  -s  ( 𝑝  ·s  𝑞 ) ) }  =  { 𝑒  ∣  ∃ 𝑓  ∈  (  L  ‘ 𝐴 ) ∃ 𝑔  ∈  (  L  ‘ 𝐵 ) 𝑒  =  ( ( ( 𝑓  ·s  𝐵 )  +s  ( 𝐴  ·s  𝑔 ) )  -s  ( 𝑓  ·s  𝑔 ) ) } | 
						
							| 3 |  | mulsval2lem | ⊢ { 𝑏  ∣  ∃ 𝑟  ∈  (  R  ‘ 𝐴 ) ∃ 𝑠  ∈  (  R  ‘ 𝐵 ) 𝑏  =  ( ( ( 𝑟  ·s  𝐵 )  +s  ( 𝐴  ·s  𝑠 ) )  -s  ( 𝑟  ·s  𝑠 ) ) }  =  { ℎ  ∣  ∃ 𝑖  ∈  (  R  ‘ 𝐴 ) ∃ 𝑘  ∈  (  R  ‘ 𝐵 ) ℎ  =  ( ( ( 𝑖  ·s  𝐵 )  +s  ( 𝐴  ·s  𝑘 ) )  -s  ( 𝑖  ·s  𝑘 ) ) } | 
						
							| 4 | 2 3 | uneq12i | ⊢ ( { 𝑎  ∣  ∃ 𝑝  ∈  (  L  ‘ 𝐴 ) ∃ 𝑞  ∈  (  L  ‘ 𝐵 ) 𝑎  =  ( ( ( 𝑝  ·s  𝐵 )  +s  ( 𝐴  ·s  𝑞 ) )  -s  ( 𝑝  ·s  𝑞 ) ) }  ∪  { 𝑏  ∣  ∃ 𝑟  ∈  (  R  ‘ 𝐴 ) ∃ 𝑠  ∈  (  R  ‘ 𝐵 ) 𝑏  =  ( ( ( 𝑟  ·s  𝐵 )  +s  ( 𝐴  ·s  𝑠 ) )  -s  ( 𝑟  ·s  𝑠 ) ) } )  =  ( { 𝑒  ∣  ∃ 𝑓  ∈  (  L  ‘ 𝐴 ) ∃ 𝑔  ∈  (  L  ‘ 𝐵 ) 𝑒  =  ( ( ( 𝑓  ·s  𝐵 )  +s  ( 𝐴  ·s  𝑔 ) )  -s  ( 𝑓  ·s  𝑔 ) ) }  ∪  { ℎ  ∣  ∃ 𝑖  ∈  (  R  ‘ 𝐴 ) ∃ 𝑘  ∈  (  R  ‘ 𝐵 ) ℎ  =  ( ( ( 𝑖  ·s  𝐵 )  +s  ( 𝐴  ·s  𝑘 ) )  -s  ( 𝑖  ·s  𝑘 ) ) } ) | 
						
							| 5 |  | mulsval2lem | ⊢ { 𝑐  ∣  ∃ 𝑡  ∈  (  L  ‘ 𝐴 ) ∃ 𝑢  ∈  (  R  ‘ 𝐵 ) 𝑐  =  ( ( ( 𝑡  ·s  𝐵 )  +s  ( 𝐴  ·s  𝑢 ) )  -s  ( 𝑡  ·s  𝑢 ) ) }  =  { 𝑙  ∣  ∃ 𝑚  ∈  (  L  ‘ 𝐴 ) ∃ 𝑛  ∈  (  R  ‘ 𝐵 ) 𝑙  =  ( ( ( 𝑚  ·s  𝐵 )  +s  ( 𝐴  ·s  𝑛 ) )  -s  ( 𝑚  ·s  𝑛 ) ) } | 
						
							| 6 |  | mulsval2lem | ⊢ { 𝑑  ∣  ∃ 𝑣  ∈  (  R  ‘ 𝐴 ) ∃ 𝑤  ∈  (  L  ‘ 𝐵 ) 𝑑  =  ( ( ( 𝑣  ·s  𝐵 )  +s  ( 𝐴  ·s  𝑤 ) )  -s  ( 𝑣  ·s  𝑤 ) ) }  =  { 𝑜  ∣  ∃ 𝑥  ∈  (  R  ‘ 𝐴 ) ∃ 𝑦  ∈  (  L  ‘ 𝐵 ) 𝑜  =  ( ( ( 𝑥  ·s  𝐵 )  +s  ( 𝐴  ·s  𝑦 ) )  -s  ( 𝑥  ·s  𝑦 ) ) } | 
						
							| 7 | 5 6 | uneq12i | ⊢ ( { 𝑐  ∣  ∃ 𝑡  ∈  (  L  ‘ 𝐴 ) ∃ 𝑢  ∈  (  R  ‘ 𝐵 ) 𝑐  =  ( ( ( 𝑡  ·s  𝐵 )  +s  ( 𝐴  ·s  𝑢 ) )  -s  ( 𝑡  ·s  𝑢 ) ) }  ∪  { 𝑑  ∣  ∃ 𝑣  ∈  (  R  ‘ 𝐴 ) ∃ 𝑤  ∈  (  L  ‘ 𝐵 ) 𝑑  =  ( ( ( 𝑣  ·s  𝐵 )  +s  ( 𝐴  ·s  𝑤 ) )  -s  ( 𝑣  ·s  𝑤 ) ) } )  =  ( { 𝑙  ∣  ∃ 𝑚  ∈  (  L  ‘ 𝐴 ) ∃ 𝑛  ∈  (  R  ‘ 𝐵 ) 𝑙  =  ( ( ( 𝑚  ·s  𝐵 )  +s  ( 𝐴  ·s  𝑛 ) )  -s  ( 𝑚  ·s  𝑛 ) ) }  ∪  { 𝑜  ∣  ∃ 𝑥  ∈  (  R  ‘ 𝐴 ) ∃ 𝑦  ∈  (  L  ‘ 𝐵 ) 𝑜  =  ( ( ( 𝑥  ·s  𝐵 )  +s  ( 𝐴  ·s  𝑦 ) )  -s  ( 𝑥  ·s  𝑦 ) ) } ) | 
						
							| 8 | 4 7 | oveq12i | ⊢ ( ( { 𝑎  ∣  ∃ 𝑝  ∈  (  L  ‘ 𝐴 ) ∃ 𝑞  ∈  (  L  ‘ 𝐵 ) 𝑎  =  ( ( ( 𝑝  ·s  𝐵 )  +s  ( 𝐴  ·s  𝑞 ) )  -s  ( 𝑝  ·s  𝑞 ) ) }  ∪  { 𝑏  ∣  ∃ 𝑟  ∈  (  R  ‘ 𝐴 ) ∃ 𝑠  ∈  (  R  ‘ 𝐵 ) 𝑏  =  ( ( ( 𝑟  ·s  𝐵 )  +s  ( 𝐴  ·s  𝑠 ) )  -s  ( 𝑟  ·s  𝑠 ) ) } )  |s  ( { 𝑐  ∣  ∃ 𝑡  ∈  (  L  ‘ 𝐴 ) ∃ 𝑢  ∈  (  R  ‘ 𝐵 ) 𝑐  =  ( ( ( 𝑡  ·s  𝐵 )  +s  ( 𝐴  ·s  𝑢 ) )  -s  ( 𝑡  ·s  𝑢 ) ) }  ∪  { 𝑑  ∣  ∃ 𝑣  ∈  (  R  ‘ 𝐴 ) ∃ 𝑤  ∈  (  L  ‘ 𝐵 ) 𝑑  =  ( ( ( 𝑣  ·s  𝐵 )  +s  ( 𝐴  ·s  𝑤 ) )  -s  ( 𝑣  ·s  𝑤 ) ) } ) )  =  ( ( { 𝑒  ∣  ∃ 𝑓  ∈  (  L  ‘ 𝐴 ) ∃ 𝑔  ∈  (  L  ‘ 𝐵 ) 𝑒  =  ( ( ( 𝑓  ·s  𝐵 )  +s  ( 𝐴  ·s  𝑔 ) )  -s  ( 𝑓  ·s  𝑔 ) ) }  ∪  { ℎ  ∣  ∃ 𝑖  ∈  (  R  ‘ 𝐴 ) ∃ 𝑘  ∈  (  R  ‘ 𝐵 ) ℎ  =  ( ( ( 𝑖  ·s  𝐵 )  +s  ( 𝐴  ·s  𝑘 ) )  -s  ( 𝑖  ·s  𝑘 ) ) } )  |s  ( { 𝑙  ∣  ∃ 𝑚  ∈  (  L  ‘ 𝐴 ) ∃ 𝑛  ∈  (  R  ‘ 𝐵 ) 𝑙  =  ( ( ( 𝑚  ·s  𝐵 )  +s  ( 𝐴  ·s  𝑛 ) )  -s  ( 𝑚  ·s  𝑛 ) ) }  ∪  { 𝑜  ∣  ∃ 𝑥  ∈  (  R  ‘ 𝐴 ) ∃ 𝑦  ∈  (  L  ‘ 𝐵 ) 𝑜  =  ( ( ( 𝑥  ·s  𝐵 )  +s  ( 𝐴  ·s  𝑦 ) )  -s  ( 𝑥  ·s  𝑦 ) ) } ) ) | 
						
							| 9 | 1 8 | eqtr4di | ⊢ ( ( 𝐴  ∈   No   ∧  𝐵  ∈   No  )  →  ( 𝐴  ·s  𝐵 )  =  ( ( { 𝑎  ∣  ∃ 𝑝  ∈  (  L  ‘ 𝐴 ) ∃ 𝑞  ∈  (  L  ‘ 𝐵 ) 𝑎  =  ( ( ( 𝑝  ·s  𝐵 )  +s  ( 𝐴  ·s  𝑞 ) )  -s  ( 𝑝  ·s  𝑞 ) ) }  ∪  { 𝑏  ∣  ∃ 𝑟  ∈  (  R  ‘ 𝐴 ) ∃ 𝑠  ∈  (  R  ‘ 𝐵 ) 𝑏  =  ( ( ( 𝑟  ·s  𝐵 )  +s  ( 𝐴  ·s  𝑠 ) )  -s  ( 𝑟  ·s  𝑠 ) ) } )  |s  ( { 𝑐  ∣  ∃ 𝑡  ∈  (  L  ‘ 𝐴 ) ∃ 𝑢  ∈  (  R  ‘ 𝐵 ) 𝑐  =  ( ( ( 𝑡  ·s  𝐵 )  +s  ( 𝐴  ·s  𝑢 ) )  -s  ( 𝑡  ·s  𝑢 ) ) }  ∪  { 𝑑  ∣  ∃ 𝑣  ∈  (  R  ‘ 𝐴 ) ∃ 𝑤  ∈  (  L  ‘ 𝐵 ) 𝑑  =  ( ( ( 𝑣  ·s  𝐵 )  +s  ( 𝐴  ·s  𝑤 ) )  -s  ( 𝑣  ·s  𝑤 ) ) } ) ) ) |