Metamath Proof Explorer


Theorem mulsval2

Description: The value of surreal multiplication, expressed with fewer distinct variable conditions. (Contributed by Scott Fenton, 8-Mar-2025)

Ref Expression
Assertion mulsval2 A No B No A s B = a | p L A q L B a = p s B + s A s q - s p s q b | r R A s R B b = r s B + s A s s - s r s s | s c | t L A u R B c = t s B + s A s u - s t s u d | v R A w L B d = v s B + s A s w - s v s w

Proof

Step Hyp Ref Expression
1 mulsval A No B No A s B = e | f L A g L B e = f s B + s A s g - s f s g h | i R A k R B h = i s B + s A s k - s i s k | s l | m L A n R B l = m s B + s A s n - s m s n o | x R A y L B o = x s B + s A s y - s x s y
2 mulsval2lem a | p L A q L B a = p s B + s A s q - s p s q = e | f L A g L B e = f s B + s A s g - s f s g
3 mulsval2lem b | r R A s R B b = r s B + s A s s - s r s s = h | i R A k R B h = i s B + s A s k - s i s k
4 2 3 uneq12i a | p L A q L B a = p s B + s A s q - s p s q b | r R A s R B b = r s B + s A s s - s r s s = e | f L A g L B e = f s B + s A s g - s f s g h | i R A k R B h = i s B + s A s k - s i s k
5 mulsval2lem c | t L A u R B c = t s B + s A s u - s t s u = l | m L A n R B l = m s B + s A s n - s m s n
6 mulsval2lem d | v R A w L B d = v s B + s A s w - s v s w = o | x R A y L B o = x s B + s A s y - s x s y
7 5 6 uneq12i c | t L A u R B c = t s B + s A s u - s t s u d | v R A w L B d = v s B + s A s w - s v s w = l | m L A n R B l = m s B + s A s n - s m s n o | x R A y L B o = x s B + s A s y - s x s y
8 4 7 oveq12i a | p L A q L B a = p s B + s A s q - s p s q b | r R A s R B b = r s B + s A s s - s r s s | s c | t L A u R B c = t s B + s A s u - s t s u d | v R A w L B d = v s B + s A s w - s v s w = e | f L A g L B e = f s B + s A s g - s f s g h | i R A k R B h = i s B + s A s k - s i s k | s l | m L A n R B l = m s B + s A s n - s m s n o | x R A y L B o = x s B + s A s y - s x s y
9 1 8 eqtr4di A No B No A s B = a | p L A q L B a = p s B + s A s q - s p s q b | r R A s R B b = r s B + s A s s - s r s s | s c | t L A u R B c = t s B + s A s u - s t s u d | v R A w L B d = v s B + s A s w - s v s w