| Step | Hyp | Ref | Expression | 
						
							| 1 |  | simp2 | ⊢ ( ( 𝑃  ∈  ( mzPolyCld ‘ 𝑉 )  ∧  𝐹  ∈  𝑃  ∧  𝐺  ∈  𝑃 )  →  𝐹  ∈  𝑃 ) | 
						
							| 2 |  | simp3 | ⊢ ( ( 𝑃  ∈  ( mzPolyCld ‘ 𝑉 )  ∧  𝐹  ∈  𝑃  ∧  𝐺  ∈  𝑃 )  →  𝐺  ∈  𝑃 ) | 
						
							| 3 |  | simp1 | ⊢ ( ( 𝑃  ∈  ( mzPolyCld ‘ 𝑉 )  ∧  𝐹  ∈  𝑃  ∧  𝐺  ∈  𝑃 )  →  𝑃  ∈  ( mzPolyCld ‘ 𝑉 ) ) | 
						
							| 4 | 3 | elfvexd | ⊢ ( ( 𝑃  ∈  ( mzPolyCld ‘ 𝑉 )  ∧  𝐹  ∈  𝑃  ∧  𝐺  ∈  𝑃 )  →  𝑉  ∈  V ) | 
						
							| 5 |  | elmzpcl | ⊢ ( 𝑉  ∈  V  →  ( 𝑃  ∈  ( mzPolyCld ‘ 𝑉 )  ↔  ( 𝑃  ⊆  ( ℤ  ↑m  ( ℤ  ↑m  𝑉 ) )  ∧  ( ( ∀ 𝑓  ∈  ℤ ( ( ℤ  ↑m  𝑉 )  ×  { 𝑓 } )  ∈  𝑃  ∧  ∀ 𝑓  ∈  𝑉 ( 𝑔  ∈  ( ℤ  ↑m  𝑉 )  ↦  ( 𝑔 ‘ 𝑓 ) )  ∈  𝑃 )  ∧  ∀ 𝑓  ∈  𝑃 ∀ 𝑔  ∈  𝑃 ( ( 𝑓  ∘f   +  𝑔 )  ∈  𝑃  ∧  ( 𝑓  ∘f   ·  𝑔 )  ∈  𝑃 ) ) ) ) ) | 
						
							| 6 | 4 5 | syl | ⊢ ( ( 𝑃  ∈  ( mzPolyCld ‘ 𝑉 )  ∧  𝐹  ∈  𝑃  ∧  𝐺  ∈  𝑃 )  →  ( 𝑃  ∈  ( mzPolyCld ‘ 𝑉 )  ↔  ( 𝑃  ⊆  ( ℤ  ↑m  ( ℤ  ↑m  𝑉 ) )  ∧  ( ( ∀ 𝑓  ∈  ℤ ( ( ℤ  ↑m  𝑉 )  ×  { 𝑓 } )  ∈  𝑃  ∧  ∀ 𝑓  ∈  𝑉 ( 𝑔  ∈  ( ℤ  ↑m  𝑉 )  ↦  ( 𝑔 ‘ 𝑓 ) )  ∈  𝑃 )  ∧  ∀ 𝑓  ∈  𝑃 ∀ 𝑔  ∈  𝑃 ( ( 𝑓  ∘f   +  𝑔 )  ∈  𝑃  ∧  ( 𝑓  ∘f   ·  𝑔 )  ∈  𝑃 ) ) ) ) ) | 
						
							| 7 | 3 6 | mpbid | ⊢ ( ( 𝑃  ∈  ( mzPolyCld ‘ 𝑉 )  ∧  𝐹  ∈  𝑃  ∧  𝐺  ∈  𝑃 )  →  ( 𝑃  ⊆  ( ℤ  ↑m  ( ℤ  ↑m  𝑉 ) )  ∧  ( ( ∀ 𝑓  ∈  ℤ ( ( ℤ  ↑m  𝑉 )  ×  { 𝑓 } )  ∈  𝑃  ∧  ∀ 𝑓  ∈  𝑉 ( 𝑔  ∈  ( ℤ  ↑m  𝑉 )  ↦  ( 𝑔 ‘ 𝑓 ) )  ∈  𝑃 )  ∧  ∀ 𝑓  ∈  𝑃 ∀ 𝑔  ∈  𝑃 ( ( 𝑓  ∘f   +  𝑔 )  ∈  𝑃  ∧  ( 𝑓  ∘f   ·  𝑔 )  ∈  𝑃 ) ) ) ) | 
						
							| 8 | 7 | simprrd | ⊢ ( ( 𝑃  ∈  ( mzPolyCld ‘ 𝑉 )  ∧  𝐹  ∈  𝑃  ∧  𝐺  ∈  𝑃 )  →  ∀ 𝑓  ∈  𝑃 ∀ 𝑔  ∈  𝑃 ( ( 𝑓  ∘f   +  𝑔 )  ∈  𝑃  ∧  ( 𝑓  ∘f   ·  𝑔 )  ∈  𝑃 ) ) | 
						
							| 9 |  | oveq1 | ⊢ ( 𝑓  =  𝐹  →  ( 𝑓  ∘f   +  𝑔 )  =  ( 𝐹  ∘f   +  𝑔 ) ) | 
						
							| 10 | 9 | eleq1d | ⊢ ( 𝑓  =  𝐹  →  ( ( 𝑓  ∘f   +  𝑔 )  ∈  𝑃  ↔  ( 𝐹  ∘f   +  𝑔 )  ∈  𝑃 ) ) | 
						
							| 11 |  | oveq1 | ⊢ ( 𝑓  =  𝐹  →  ( 𝑓  ∘f   ·  𝑔 )  =  ( 𝐹  ∘f   ·  𝑔 ) ) | 
						
							| 12 | 11 | eleq1d | ⊢ ( 𝑓  =  𝐹  →  ( ( 𝑓  ∘f   ·  𝑔 )  ∈  𝑃  ↔  ( 𝐹  ∘f   ·  𝑔 )  ∈  𝑃 ) ) | 
						
							| 13 | 10 12 | anbi12d | ⊢ ( 𝑓  =  𝐹  →  ( ( ( 𝑓  ∘f   +  𝑔 )  ∈  𝑃  ∧  ( 𝑓  ∘f   ·  𝑔 )  ∈  𝑃 )  ↔  ( ( 𝐹  ∘f   +  𝑔 )  ∈  𝑃  ∧  ( 𝐹  ∘f   ·  𝑔 )  ∈  𝑃 ) ) ) | 
						
							| 14 |  | oveq2 | ⊢ ( 𝑔  =  𝐺  →  ( 𝐹  ∘f   +  𝑔 )  =  ( 𝐹  ∘f   +  𝐺 ) ) | 
						
							| 15 | 14 | eleq1d | ⊢ ( 𝑔  =  𝐺  →  ( ( 𝐹  ∘f   +  𝑔 )  ∈  𝑃  ↔  ( 𝐹  ∘f   +  𝐺 )  ∈  𝑃 ) ) | 
						
							| 16 |  | oveq2 | ⊢ ( 𝑔  =  𝐺  →  ( 𝐹  ∘f   ·  𝑔 )  =  ( 𝐹  ∘f   ·  𝐺 ) ) | 
						
							| 17 | 16 | eleq1d | ⊢ ( 𝑔  =  𝐺  →  ( ( 𝐹  ∘f   ·  𝑔 )  ∈  𝑃  ↔  ( 𝐹  ∘f   ·  𝐺 )  ∈  𝑃 ) ) | 
						
							| 18 | 15 17 | anbi12d | ⊢ ( 𝑔  =  𝐺  →  ( ( ( 𝐹  ∘f   +  𝑔 )  ∈  𝑃  ∧  ( 𝐹  ∘f   ·  𝑔 )  ∈  𝑃 )  ↔  ( ( 𝐹  ∘f   +  𝐺 )  ∈  𝑃  ∧  ( 𝐹  ∘f   ·  𝐺 )  ∈  𝑃 ) ) ) | 
						
							| 19 | 13 18 | rspc2va | ⊢ ( ( ( 𝐹  ∈  𝑃  ∧  𝐺  ∈  𝑃 )  ∧  ∀ 𝑓  ∈  𝑃 ∀ 𝑔  ∈  𝑃 ( ( 𝑓  ∘f   +  𝑔 )  ∈  𝑃  ∧  ( 𝑓  ∘f   ·  𝑔 )  ∈  𝑃 ) )  →  ( ( 𝐹  ∘f   +  𝐺 )  ∈  𝑃  ∧  ( 𝐹  ∘f   ·  𝐺 )  ∈  𝑃 ) ) | 
						
							| 20 | 1 2 8 19 | syl21anc | ⊢ ( ( 𝑃  ∈  ( mzPolyCld ‘ 𝑉 )  ∧  𝐹  ∈  𝑃  ∧  𝐺  ∈  𝑃 )  →  ( ( 𝐹  ∘f   +  𝐺 )  ∈  𝑃  ∧  ( 𝐹  ∘f   ·  𝐺 )  ∈  𝑃 ) ) |