| Step |
Hyp |
Ref |
Expression |
| 1 |
|
mzpcln0 |
⊢ ( 𝑉 ∈ V → ( mzPolyCld ‘ 𝑉 ) ≠ ∅ ) |
| 2 |
|
intex |
⊢ ( ( mzPolyCld ‘ 𝑉 ) ≠ ∅ ↔ ∩ ( mzPolyCld ‘ 𝑉 ) ∈ V ) |
| 3 |
1 2
|
sylib |
⊢ ( 𝑉 ∈ V → ∩ ( mzPolyCld ‘ 𝑉 ) ∈ V ) |
| 4 |
|
fveq2 |
⊢ ( 𝑣 = 𝑉 → ( mzPolyCld ‘ 𝑣 ) = ( mzPolyCld ‘ 𝑉 ) ) |
| 5 |
4
|
inteqd |
⊢ ( 𝑣 = 𝑉 → ∩ ( mzPolyCld ‘ 𝑣 ) = ∩ ( mzPolyCld ‘ 𝑉 ) ) |
| 6 |
|
df-mzp |
⊢ mzPoly = ( 𝑣 ∈ V ↦ ∩ ( mzPolyCld ‘ 𝑣 ) ) |
| 7 |
5 6
|
fvmptg |
⊢ ( ( 𝑉 ∈ V ∧ ∩ ( mzPolyCld ‘ 𝑉 ) ∈ V ) → ( mzPoly ‘ 𝑉 ) = ∩ ( mzPolyCld ‘ 𝑉 ) ) |
| 8 |
3 7
|
mpdan |
⊢ ( 𝑉 ∈ V → ( mzPoly ‘ 𝑉 ) = ∩ ( mzPolyCld ‘ 𝑉 ) ) |