Metamath Proof Explorer


Theorem mzpval

Description: Value of the mzPoly function. (Contributed by Stefan O'Rear, 4-Oct-2014)

Ref Expression
Assertion mzpval
|- ( V e. _V -> ( mzPoly ` V ) = |^| ( mzPolyCld ` V ) )

Proof

Step Hyp Ref Expression
1 mzpcln0
 |-  ( V e. _V -> ( mzPolyCld ` V ) =/= (/) )
2 intex
 |-  ( ( mzPolyCld ` V ) =/= (/) <-> |^| ( mzPolyCld ` V ) e. _V )
3 1 2 sylib
 |-  ( V e. _V -> |^| ( mzPolyCld ` V ) e. _V )
4 fveq2
 |-  ( v = V -> ( mzPolyCld ` v ) = ( mzPolyCld ` V ) )
5 4 inteqd
 |-  ( v = V -> |^| ( mzPolyCld ` v ) = |^| ( mzPolyCld ` V ) )
6 df-mzp
 |-  mzPoly = ( v e. _V |-> |^| ( mzPolyCld ` v ) )
7 5 6 fvmptg
 |-  ( ( V e. _V /\ |^| ( mzPolyCld ` V ) e. _V ) -> ( mzPoly ` V ) = |^| ( mzPolyCld ` V ) )
8 3 7 mpdan
 |-  ( V e. _V -> ( mzPoly ` V ) = |^| ( mzPolyCld ` V ) )