| Step |
Hyp |
Ref |
Expression |
| 1 |
|
mzpcln0 |
|- ( V e. _V -> ( mzPolyCld ` V ) =/= (/) ) |
| 2 |
|
intex |
|- ( ( mzPolyCld ` V ) =/= (/) <-> |^| ( mzPolyCld ` V ) e. _V ) |
| 3 |
1 2
|
sylib |
|- ( V e. _V -> |^| ( mzPolyCld ` V ) e. _V ) |
| 4 |
|
fveq2 |
|- ( v = V -> ( mzPolyCld ` v ) = ( mzPolyCld ` V ) ) |
| 5 |
4
|
inteqd |
|- ( v = V -> |^| ( mzPolyCld ` v ) = |^| ( mzPolyCld ` V ) ) |
| 6 |
|
df-mzp |
|- mzPoly = ( v e. _V |-> |^| ( mzPolyCld ` v ) ) |
| 7 |
5 6
|
fvmptg |
|- ( ( V e. _V /\ |^| ( mzPolyCld ` V ) e. _V ) -> ( mzPoly ` V ) = |^| ( mzPolyCld ` V ) ) |
| 8 |
3 7
|
mpdan |
|- ( V e. _V -> ( mzPoly ` V ) = |^| ( mzPolyCld ` V ) ) |