| Step |
Hyp |
Ref |
Expression |
| 1 |
|
df-mzp |
|- mzPoly = ( v e. _V |-> |^| ( mzPolyCld ` v ) ) |
| 2 |
1
|
dmeqi |
|- dom mzPoly = dom ( v e. _V |-> |^| ( mzPolyCld ` v ) ) |
| 3 |
|
dmmptg |
|- ( A. v e. _V |^| ( mzPolyCld ` v ) e. _V -> dom ( v e. _V |-> |^| ( mzPolyCld ` v ) ) = _V ) |
| 4 |
|
mzpcln0 |
|- ( v e. _V -> ( mzPolyCld ` v ) =/= (/) ) |
| 5 |
|
intex |
|- ( ( mzPolyCld ` v ) =/= (/) <-> |^| ( mzPolyCld ` v ) e. _V ) |
| 6 |
4 5
|
sylib |
|- ( v e. _V -> |^| ( mzPolyCld ` v ) e. _V ) |
| 7 |
3 6
|
mprg |
|- dom ( v e. _V |-> |^| ( mzPolyCld ` v ) ) = _V |
| 8 |
2 7
|
eqtri |
|- dom mzPoly = _V |