| Step | Hyp | Ref | Expression | 
						
							| 1 |  | df-mzp |  |-  mzPoly = ( v e. _V |-> |^| ( mzPolyCld ` v ) ) | 
						
							| 2 | 1 | dmeqi |  |-  dom mzPoly = dom ( v e. _V |-> |^| ( mzPolyCld ` v ) ) | 
						
							| 3 |  | dmmptg |  |-  ( A. v e. _V |^| ( mzPolyCld ` v ) e. _V -> dom ( v e. _V |-> |^| ( mzPolyCld ` v ) ) = _V ) | 
						
							| 4 |  | mzpcln0 |  |-  ( v e. _V -> ( mzPolyCld ` v ) =/= (/) ) | 
						
							| 5 |  | intex |  |-  ( ( mzPolyCld ` v ) =/= (/) <-> |^| ( mzPolyCld ` v ) e. _V ) | 
						
							| 6 | 4 5 | sylib |  |-  ( v e. _V -> |^| ( mzPolyCld ` v ) e. _V ) | 
						
							| 7 | 3 6 | mprg |  |-  dom ( v e. _V |-> |^| ( mzPolyCld ` v ) ) = _V | 
						
							| 8 | 2 7 | eqtri |  |-  dom mzPoly = _V |