Description: mzPoly is defined for all index sets which are sets. This is used with elfvdm to eliminate sethood antecedents. (Contributed by Stefan O'Rear, 4-Oct-2014)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | dmmzp | ⊢ dom mzPoly = V | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | df-mzp | ⊢ mzPoly = ( 𝑣 ∈ V ↦ ∩ ( mzPolyCld ‘ 𝑣 ) ) | |
| 2 | 1 | dmeqi | ⊢ dom mzPoly = dom ( 𝑣 ∈ V ↦ ∩ ( mzPolyCld ‘ 𝑣 ) ) | 
| 3 | dmmptg | ⊢ ( ∀ 𝑣 ∈ V ∩ ( mzPolyCld ‘ 𝑣 ) ∈ V → dom ( 𝑣 ∈ V ↦ ∩ ( mzPolyCld ‘ 𝑣 ) ) = V ) | |
| 4 | mzpcln0 | ⊢ ( 𝑣 ∈ V → ( mzPolyCld ‘ 𝑣 ) ≠ ∅ ) | |
| 5 | intex | ⊢ ( ( mzPolyCld ‘ 𝑣 ) ≠ ∅ ↔ ∩ ( mzPolyCld ‘ 𝑣 ) ∈ V ) | |
| 6 | 4 5 | sylib | ⊢ ( 𝑣 ∈ V → ∩ ( mzPolyCld ‘ 𝑣 ) ∈ V ) | 
| 7 | 3 6 | mprg | ⊢ dom ( 𝑣 ∈ V ↦ ∩ ( mzPolyCld ‘ 𝑣 ) ) = V | 
| 8 | 2 7 | eqtri | ⊢ dom mzPoly = V |