Metamath Proof Explorer


Theorem mzpproj

Description: A projection function is polynomial. (Contributed by Stefan O'Rear, 4-Oct-2014)

Ref Expression
Assertion mzpproj ( ( 𝑉 ∈ V ∧ 𝑋𝑉 ) → ( 𝑔 ∈ ( ℤ ↑m 𝑉 ) ↦ ( 𝑔𝑋 ) ) ∈ ( mzPoly ‘ 𝑉 ) )

Proof

Step Hyp Ref Expression
1 mzpincl ( 𝑉 ∈ V → ( mzPoly ‘ 𝑉 ) ∈ ( mzPolyCld ‘ 𝑉 ) )
2 mzpcl2 ( ( ( mzPoly ‘ 𝑉 ) ∈ ( mzPolyCld ‘ 𝑉 ) ∧ 𝑋𝑉 ) → ( 𝑔 ∈ ( ℤ ↑m 𝑉 ) ↦ ( 𝑔𝑋 ) ) ∈ ( mzPoly ‘ 𝑉 ) )
3 1 2 sylan ( ( 𝑉 ∈ V ∧ 𝑋𝑉 ) → ( 𝑔 ∈ ( ℤ ↑m 𝑉 ) ↦ ( 𝑔𝑋 ) ) ∈ ( mzPoly ‘ 𝑉 ) )