| Step |
Hyp |
Ref |
Expression |
| 1 |
|
naddcom |
⊢ ( ( 𝐵 ∈ On ∧ 𝐶 ∈ On ) → ( 𝐵 +no 𝐶 ) = ( 𝐶 +no 𝐵 ) ) |
| 2 |
1
|
3adant1 |
⊢ ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On ) → ( 𝐵 +no 𝐶 ) = ( 𝐶 +no 𝐵 ) ) |
| 3 |
2
|
oveq2d |
⊢ ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On ) → ( 𝐴 +no ( 𝐵 +no 𝐶 ) ) = ( 𝐴 +no ( 𝐶 +no 𝐵 ) ) ) |
| 4 |
|
naddass |
⊢ ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On ) → ( ( 𝐴 +no 𝐵 ) +no 𝐶 ) = ( 𝐴 +no ( 𝐵 +no 𝐶 ) ) ) |
| 5 |
|
naddass |
⊢ ( ( 𝐴 ∈ On ∧ 𝐶 ∈ On ∧ 𝐵 ∈ On ) → ( ( 𝐴 +no 𝐶 ) +no 𝐵 ) = ( 𝐴 +no ( 𝐶 +no 𝐵 ) ) ) |
| 6 |
5
|
3com23 |
⊢ ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On ) → ( ( 𝐴 +no 𝐶 ) +no 𝐵 ) = ( 𝐴 +no ( 𝐶 +no 𝐵 ) ) ) |
| 7 |
3 4 6
|
3eqtr4d |
⊢ ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On ) → ( ( 𝐴 +no 𝐵 ) +no 𝐶 ) = ( ( 𝐴 +no 𝐶 ) +no 𝐵 ) ) |