| Step |
Hyp |
Ref |
Expression |
| 1 |
|
nadd32 |
⊢ ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On ) → ( ( 𝐴 +no 𝐵 ) +no 𝐶 ) = ( ( 𝐴 +no 𝐶 ) +no 𝐵 ) ) |
| 2 |
1
|
3expa |
⊢ ( ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) ∧ 𝐶 ∈ On ) → ( ( 𝐴 +no 𝐵 ) +no 𝐶 ) = ( ( 𝐴 +no 𝐶 ) +no 𝐵 ) ) |
| 3 |
2
|
adantrr |
⊢ ( ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) ∧ ( 𝐶 ∈ On ∧ 𝐷 ∈ On ) ) → ( ( 𝐴 +no 𝐵 ) +no 𝐶 ) = ( ( 𝐴 +no 𝐶 ) +no 𝐵 ) ) |
| 4 |
3
|
oveq1d |
⊢ ( ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) ∧ ( 𝐶 ∈ On ∧ 𝐷 ∈ On ) ) → ( ( ( 𝐴 +no 𝐵 ) +no 𝐶 ) +no 𝐷 ) = ( ( ( 𝐴 +no 𝐶 ) +no 𝐵 ) +no 𝐷 ) ) |
| 5 |
|
naddcl |
⊢ ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) → ( 𝐴 +no 𝐵 ) ∈ On ) |
| 6 |
5
|
adantr |
⊢ ( ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) ∧ ( 𝐶 ∈ On ∧ 𝐷 ∈ On ) ) → ( 𝐴 +no 𝐵 ) ∈ On ) |
| 7 |
|
simprl |
⊢ ( ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) ∧ ( 𝐶 ∈ On ∧ 𝐷 ∈ On ) ) → 𝐶 ∈ On ) |
| 8 |
|
simprr |
⊢ ( ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) ∧ ( 𝐶 ∈ On ∧ 𝐷 ∈ On ) ) → 𝐷 ∈ On ) |
| 9 |
|
naddass |
⊢ ( ( ( 𝐴 +no 𝐵 ) ∈ On ∧ 𝐶 ∈ On ∧ 𝐷 ∈ On ) → ( ( ( 𝐴 +no 𝐵 ) +no 𝐶 ) +no 𝐷 ) = ( ( 𝐴 +no 𝐵 ) +no ( 𝐶 +no 𝐷 ) ) ) |
| 10 |
6 7 8 9
|
syl3anc |
⊢ ( ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) ∧ ( 𝐶 ∈ On ∧ 𝐷 ∈ On ) ) → ( ( ( 𝐴 +no 𝐵 ) +no 𝐶 ) +no 𝐷 ) = ( ( 𝐴 +no 𝐵 ) +no ( 𝐶 +no 𝐷 ) ) ) |
| 11 |
|
naddcl |
⊢ ( ( 𝐴 ∈ On ∧ 𝐶 ∈ On ) → ( 𝐴 +no 𝐶 ) ∈ On ) |
| 12 |
11
|
ad2ant2r |
⊢ ( ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) ∧ ( 𝐶 ∈ On ∧ 𝐷 ∈ On ) ) → ( 𝐴 +no 𝐶 ) ∈ On ) |
| 13 |
|
simplr |
⊢ ( ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) ∧ ( 𝐶 ∈ On ∧ 𝐷 ∈ On ) ) → 𝐵 ∈ On ) |
| 14 |
|
naddass |
⊢ ( ( ( 𝐴 +no 𝐶 ) ∈ On ∧ 𝐵 ∈ On ∧ 𝐷 ∈ On ) → ( ( ( 𝐴 +no 𝐶 ) +no 𝐵 ) +no 𝐷 ) = ( ( 𝐴 +no 𝐶 ) +no ( 𝐵 +no 𝐷 ) ) ) |
| 15 |
12 13 8 14
|
syl3anc |
⊢ ( ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) ∧ ( 𝐶 ∈ On ∧ 𝐷 ∈ On ) ) → ( ( ( 𝐴 +no 𝐶 ) +no 𝐵 ) +no 𝐷 ) = ( ( 𝐴 +no 𝐶 ) +no ( 𝐵 +no 𝐷 ) ) ) |
| 16 |
4 10 15
|
3eqtr3d |
⊢ ( ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) ∧ ( 𝐶 ∈ On ∧ 𝐷 ∈ On ) ) → ( ( 𝐴 +no 𝐵 ) +no ( 𝐶 +no 𝐷 ) ) = ( ( 𝐴 +no 𝐶 ) +no ( 𝐵 +no 𝐷 ) ) ) |