| Step |
Hyp |
Ref |
Expression |
| 1 |
|
nadd4 |
⊢ ( ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) ∧ ( 𝐶 ∈ On ∧ 𝐷 ∈ On ) ) → ( ( 𝐴 +no 𝐵 ) +no ( 𝐶 +no 𝐷 ) ) = ( ( 𝐴 +no 𝐶 ) +no ( 𝐵 +no 𝐷 ) ) ) |
| 2 |
|
naddcom |
⊢ ( ( 𝐵 ∈ On ∧ 𝐷 ∈ On ) → ( 𝐵 +no 𝐷 ) = ( 𝐷 +no 𝐵 ) ) |
| 3 |
2
|
ad2ant2l |
⊢ ( ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) ∧ ( 𝐶 ∈ On ∧ 𝐷 ∈ On ) ) → ( 𝐵 +no 𝐷 ) = ( 𝐷 +no 𝐵 ) ) |
| 4 |
3
|
oveq2d |
⊢ ( ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) ∧ ( 𝐶 ∈ On ∧ 𝐷 ∈ On ) ) → ( ( 𝐴 +no 𝐶 ) +no ( 𝐵 +no 𝐷 ) ) = ( ( 𝐴 +no 𝐶 ) +no ( 𝐷 +no 𝐵 ) ) ) |
| 5 |
1 4
|
eqtrd |
⊢ ( ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) ∧ ( 𝐶 ∈ On ∧ 𝐷 ∈ On ) ) → ( ( 𝐴 +no 𝐵 ) +no ( 𝐶 +no 𝐷 ) ) = ( ( 𝐴 +no 𝐶 ) +no ( 𝐷 +no 𝐵 ) ) ) |