| Step |
Hyp |
Ref |
Expression |
| 1 |
|
nadd4 |
|- ( ( ( A e. On /\ B e. On ) /\ ( C e. On /\ D e. On ) ) -> ( ( A +no B ) +no ( C +no D ) ) = ( ( A +no C ) +no ( B +no D ) ) ) |
| 2 |
|
naddcom |
|- ( ( B e. On /\ D e. On ) -> ( B +no D ) = ( D +no B ) ) |
| 3 |
2
|
ad2ant2l |
|- ( ( ( A e. On /\ B e. On ) /\ ( C e. On /\ D e. On ) ) -> ( B +no D ) = ( D +no B ) ) |
| 4 |
3
|
oveq2d |
|- ( ( ( A e. On /\ B e. On ) /\ ( C e. On /\ D e. On ) ) -> ( ( A +no C ) +no ( B +no D ) ) = ( ( A +no C ) +no ( D +no B ) ) ) |
| 5 |
1 4
|
eqtrd |
|- ( ( ( A e. On /\ B e. On ) /\ ( C e. On /\ D e. On ) ) -> ( ( A +no B ) +no ( C +no D ) ) = ( ( A +no C ) +no ( D +no B ) ) ) |