Metamath Proof Explorer


Theorem nadd4

Description: Rearragement of terms in a quadruple sum. (Contributed by Scott Fenton, 5-Feb-2025)

Ref Expression
Assertion nadd4
|- ( ( ( A e. On /\ B e. On ) /\ ( C e. On /\ D e. On ) ) -> ( ( A +no B ) +no ( C +no D ) ) = ( ( A +no C ) +no ( B +no D ) ) )

Proof

Step Hyp Ref Expression
1 nadd32
 |-  ( ( A e. On /\ B e. On /\ C e. On ) -> ( ( A +no B ) +no C ) = ( ( A +no C ) +no B ) )
2 1 3expa
 |-  ( ( ( A e. On /\ B e. On ) /\ C e. On ) -> ( ( A +no B ) +no C ) = ( ( A +no C ) +no B ) )
3 2 adantrr
 |-  ( ( ( A e. On /\ B e. On ) /\ ( C e. On /\ D e. On ) ) -> ( ( A +no B ) +no C ) = ( ( A +no C ) +no B ) )
4 3 oveq1d
 |-  ( ( ( A e. On /\ B e. On ) /\ ( C e. On /\ D e. On ) ) -> ( ( ( A +no B ) +no C ) +no D ) = ( ( ( A +no C ) +no B ) +no D ) )
5 naddcl
 |-  ( ( A e. On /\ B e. On ) -> ( A +no B ) e. On )
6 5 adantr
 |-  ( ( ( A e. On /\ B e. On ) /\ ( C e. On /\ D e. On ) ) -> ( A +no B ) e. On )
7 simprl
 |-  ( ( ( A e. On /\ B e. On ) /\ ( C e. On /\ D e. On ) ) -> C e. On )
8 simprr
 |-  ( ( ( A e. On /\ B e. On ) /\ ( C e. On /\ D e. On ) ) -> D e. On )
9 naddass
 |-  ( ( ( A +no B ) e. On /\ C e. On /\ D e. On ) -> ( ( ( A +no B ) +no C ) +no D ) = ( ( A +no B ) +no ( C +no D ) ) )
10 6 7 8 9 syl3anc
 |-  ( ( ( A e. On /\ B e. On ) /\ ( C e. On /\ D e. On ) ) -> ( ( ( A +no B ) +no C ) +no D ) = ( ( A +no B ) +no ( C +no D ) ) )
11 naddcl
 |-  ( ( A e. On /\ C e. On ) -> ( A +no C ) e. On )
12 11 ad2ant2r
 |-  ( ( ( A e. On /\ B e. On ) /\ ( C e. On /\ D e. On ) ) -> ( A +no C ) e. On )
13 simplr
 |-  ( ( ( A e. On /\ B e. On ) /\ ( C e. On /\ D e. On ) ) -> B e. On )
14 naddass
 |-  ( ( ( A +no C ) e. On /\ B e. On /\ D e. On ) -> ( ( ( A +no C ) +no B ) +no D ) = ( ( A +no C ) +no ( B +no D ) ) )
15 12 13 8 14 syl3anc
 |-  ( ( ( A e. On /\ B e. On ) /\ ( C e. On /\ D e. On ) ) -> ( ( ( A +no C ) +no B ) +no D ) = ( ( A +no C ) +no ( B +no D ) ) )
16 4 10 15 3eqtr3d
 |-  ( ( ( A e. On /\ B e. On ) /\ ( C e. On /\ D e. On ) ) -> ( ( A +no B ) +no ( C +no D ) ) = ( ( A +no C ) +no ( B +no D ) ) )