Step |
Hyp |
Ref |
Expression |
1 |
|
nadd32 |
|- ( ( A e. On /\ B e. On /\ C e. On ) -> ( ( A +no B ) +no C ) = ( ( A +no C ) +no B ) ) |
2 |
1
|
3expa |
|- ( ( ( A e. On /\ B e. On ) /\ C e. On ) -> ( ( A +no B ) +no C ) = ( ( A +no C ) +no B ) ) |
3 |
2
|
adantrr |
|- ( ( ( A e. On /\ B e. On ) /\ ( C e. On /\ D e. On ) ) -> ( ( A +no B ) +no C ) = ( ( A +no C ) +no B ) ) |
4 |
3
|
oveq1d |
|- ( ( ( A e. On /\ B e. On ) /\ ( C e. On /\ D e. On ) ) -> ( ( ( A +no B ) +no C ) +no D ) = ( ( ( A +no C ) +no B ) +no D ) ) |
5 |
|
naddcl |
|- ( ( A e. On /\ B e. On ) -> ( A +no B ) e. On ) |
6 |
5
|
adantr |
|- ( ( ( A e. On /\ B e. On ) /\ ( C e. On /\ D e. On ) ) -> ( A +no B ) e. On ) |
7 |
|
simprl |
|- ( ( ( A e. On /\ B e. On ) /\ ( C e. On /\ D e. On ) ) -> C e. On ) |
8 |
|
simprr |
|- ( ( ( A e. On /\ B e. On ) /\ ( C e. On /\ D e. On ) ) -> D e. On ) |
9 |
|
naddass |
|- ( ( ( A +no B ) e. On /\ C e. On /\ D e. On ) -> ( ( ( A +no B ) +no C ) +no D ) = ( ( A +no B ) +no ( C +no D ) ) ) |
10 |
6 7 8 9
|
syl3anc |
|- ( ( ( A e. On /\ B e. On ) /\ ( C e. On /\ D e. On ) ) -> ( ( ( A +no B ) +no C ) +no D ) = ( ( A +no B ) +no ( C +no D ) ) ) |
11 |
|
naddcl |
|- ( ( A e. On /\ C e. On ) -> ( A +no C ) e. On ) |
12 |
11
|
ad2ant2r |
|- ( ( ( A e. On /\ B e. On ) /\ ( C e. On /\ D e. On ) ) -> ( A +no C ) e. On ) |
13 |
|
simplr |
|- ( ( ( A e. On /\ B e. On ) /\ ( C e. On /\ D e. On ) ) -> B e. On ) |
14 |
|
naddass |
|- ( ( ( A +no C ) e. On /\ B e. On /\ D e. On ) -> ( ( ( A +no C ) +no B ) +no D ) = ( ( A +no C ) +no ( B +no D ) ) ) |
15 |
12 13 8 14
|
syl3anc |
|- ( ( ( A e. On /\ B e. On ) /\ ( C e. On /\ D e. On ) ) -> ( ( ( A +no C ) +no B ) +no D ) = ( ( A +no C ) +no ( B +no D ) ) ) |
16 |
4 10 15
|
3eqtr3d |
|- ( ( ( A e. On /\ B e. On ) /\ ( C e. On /\ D e. On ) ) -> ( ( A +no B ) +no ( C +no D ) ) = ( ( A +no C ) +no ( B +no D ) ) ) |