| Step |
Hyp |
Ref |
Expression |
| 1 |
|
simprr |
⊢ ( ( ( 𝐶 ∈ On ∧ 𝐷 ∈ On ) ∧ ( 𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐷 ) ) → 𝐵 ∈ 𝐷 ) |
| 2 |
|
onelon |
⊢ ( ( 𝐷 ∈ On ∧ 𝐵 ∈ 𝐷 ) → 𝐵 ∈ On ) |
| 3 |
2
|
ad2ant2l |
⊢ ( ( ( 𝐶 ∈ On ∧ 𝐷 ∈ On ) ∧ ( 𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐷 ) ) → 𝐵 ∈ On ) |
| 4 |
|
simplr |
⊢ ( ( ( 𝐶 ∈ On ∧ 𝐷 ∈ On ) ∧ ( 𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐷 ) ) → 𝐷 ∈ On ) |
| 5 |
|
onelon |
⊢ ( ( 𝐶 ∈ On ∧ 𝐴 ∈ 𝐶 ) → 𝐴 ∈ On ) |
| 6 |
5
|
ad2ant2r |
⊢ ( ( ( 𝐶 ∈ On ∧ 𝐷 ∈ On ) ∧ ( 𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐷 ) ) → 𝐴 ∈ On ) |
| 7 |
|
naddel2 |
⊢ ( ( 𝐵 ∈ On ∧ 𝐷 ∈ On ∧ 𝐴 ∈ On ) → ( 𝐵 ∈ 𝐷 ↔ ( 𝐴 +no 𝐵 ) ∈ ( 𝐴 +no 𝐷 ) ) ) |
| 8 |
3 4 6 7
|
syl3anc |
⊢ ( ( ( 𝐶 ∈ On ∧ 𝐷 ∈ On ) ∧ ( 𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐷 ) ) → ( 𝐵 ∈ 𝐷 ↔ ( 𝐴 +no 𝐵 ) ∈ ( 𝐴 +no 𝐷 ) ) ) |
| 9 |
1 8
|
mpbid |
⊢ ( ( ( 𝐶 ∈ On ∧ 𝐷 ∈ On ) ∧ ( 𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐷 ) ) → ( 𝐴 +no 𝐵 ) ∈ ( 𝐴 +no 𝐷 ) ) |
| 10 |
|
simprl |
⊢ ( ( ( 𝐶 ∈ On ∧ 𝐷 ∈ On ) ∧ ( 𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐷 ) ) → 𝐴 ∈ 𝐶 ) |
| 11 |
|
simpll |
⊢ ( ( ( 𝐶 ∈ On ∧ 𝐷 ∈ On ) ∧ ( 𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐷 ) ) → 𝐶 ∈ On ) |
| 12 |
|
naddel1 |
⊢ ( ( 𝐴 ∈ On ∧ 𝐶 ∈ On ∧ 𝐷 ∈ On ) → ( 𝐴 ∈ 𝐶 ↔ ( 𝐴 +no 𝐷 ) ∈ ( 𝐶 +no 𝐷 ) ) ) |
| 13 |
6 11 4 12
|
syl3anc |
⊢ ( ( ( 𝐶 ∈ On ∧ 𝐷 ∈ On ) ∧ ( 𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐷 ) ) → ( 𝐴 ∈ 𝐶 ↔ ( 𝐴 +no 𝐷 ) ∈ ( 𝐶 +no 𝐷 ) ) ) |
| 14 |
10 13
|
mpbid |
⊢ ( ( ( 𝐶 ∈ On ∧ 𝐷 ∈ On ) ∧ ( 𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐷 ) ) → ( 𝐴 +no 𝐷 ) ∈ ( 𝐶 +no 𝐷 ) ) |
| 15 |
|
naddcl |
⊢ ( ( 𝐶 ∈ On ∧ 𝐷 ∈ On ) → ( 𝐶 +no 𝐷 ) ∈ On ) |
| 16 |
15
|
adantr |
⊢ ( ( ( 𝐶 ∈ On ∧ 𝐷 ∈ On ) ∧ ( 𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐷 ) ) → ( 𝐶 +no 𝐷 ) ∈ On ) |
| 17 |
|
ontr1 |
⊢ ( ( 𝐶 +no 𝐷 ) ∈ On → ( ( ( 𝐴 +no 𝐵 ) ∈ ( 𝐴 +no 𝐷 ) ∧ ( 𝐴 +no 𝐷 ) ∈ ( 𝐶 +no 𝐷 ) ) → ( 𝐴 +no 𝐵 ) ∈ ( 𝐶 +no 𝐷 ) ) ) |
| 18 |
16 17
|
syl |
⊢ ( ( ( 𝐶 ∈ On ∧ 𝐷 ∈ On ) ∧ ( 𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐷 ) ) → ( ( ( 𝐴 +no 𝐵 ) ∈ ( 𝐴 +no 𝐷 ) ∧ ( 𝐴 +no 𝐷 ) ∈ ( 𝐶 +no 𝐷 ) ) → ( 𝐴 +no 𝐵 ) ∈ ( 𝐶 +no 𝐷 ) ) ) |
| 19 |
9 14 18
|
mp2and |
⊢ ( ( ( 𝐶 ∈ On ∧ 𝐷 ∈ On ) ∧ ( 𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐷 ) ) → ( 𝐴 +no 𝐵 ) ∈ ( 𝐶 +no 𝐷 ) ) |
| 20 |
19
|
ex |
⊢ ( ( 𝐶 ∈ On ∧ 𝐷 ∈ On ) → ( ( 𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐷 ) → ( 𝐴 +no 𝐵 ) ∈ ( 𝐶 +no 𝐷 ) ) ) |