Metamath Proof Explorer
Description: Alternative denial in terms of disjunction and negation. This explains
the name "alternative denial". (Contributed by BJ, 19-Oct-2022)
|
|
Ref |
Expression |
|
Assertion |
nanor |
⊢ ( ( 𝜑 ⊼ 𝜓 ) ↔ ( ¬ 𝜑 ∨ ¬ 𝜓 ) ) |
Proof
| Step |
Hyp |
Ref |
Expression |
| 1 |
|
df-nan |
⊢ ( ( 𝜑 ⊼ 𝜓 ) ↔ ¬ ( 𝜑 ∧ 𝜓 ) ) |
| 2 |
|
ianor |
⊢ ( ¬ ( 𝜑 ∧ 𝜓 ) ↔ ( ¬ 𝜑 ∨ ¬ 𝜓 ) ) |
| 3 |
1 2
|
bitri |
⊢ ( ( 𝜑 ⊼ 𝜓 ) ↔ ( ¬ 𝜑 ∨ ¬ 𝜓 ) ) |