Metamath Proof Explorer


Theorem neg2subd

Description: Relationship between subtraction and negative. (Contributed by Mario Carneiro, 27-May-2016)

Ref Expression
Hypotheses negidd.1 ( 𝜑𝐴 ∈ ℂ )
pncand.2 ( 𝜑𝐵 ∈ ℂ )
Assertion neg2subd ( 𝜑 → ( - 𝐴 − - 𝐵 ) = ( 𝐵𝐴 ) )

Proof

Step Hyp Ref Expression
1 negidd.1 ( 𝜑𝐴 ∈ ℂ )
2 pncand.2 ( 𝜑𝐵 ∈ ℂ )
3 neg2sub ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( - 𝐴 − - 𝐵 ) = ( 𝐵𝐴 ) )
4 1 2 3 syl2anc ( 𝜑 → ( - 𝐴 − - 𝐵 ) = ( 𝐵𝐴 ) )