Description: Relationship between subtraction and negative. (Contributed by Mario Carneiro, 27-May-2016)
Ref | Expression | ||
---|---|---|---|
Hypotheses | negidd.1 | |- ( ph -> A e. CC ) |
|
pncand.2 | |- ( ph -> B e. CC ) |
||
Assertion | neg2subd | |- ( ph -> ( -u A - -u B ) = ( B - A ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | negidd.1 | |- ( ph -> A e. CC ) |
|
2 | pncand.2 | |- ( ph -> B e. CC ) |
|
3 | neg2sub | |- ( ( A e. CC /\ B e. CC ) -> ( -u A - -u B ) = ( B - A ) ) |
|
4 | 1 2 3 | syl2anc | |- ( ph -> ( -u A - -u B ) = ( B - A ) ) |