Metamath Proof Explorer


Theorem neghalfpirx

Description: -u _pi / 2 is an extended real. (Contributed by David A. Wheeler, 8-Dec-2018)

Ref Expression
Assertion neghalfpirx - ( π / 2 ) ∈ ℝ*

Proof

Step Hyp Ref Expression
1 neghalfpire - ( π / 2 ) ∈ ℝ
2 1 rexri - ( π / 2 ) ∈ ℝ*