Metamath Proof Explorer
Description: If two complex numbers are unequal, so are their negatives.
Contrapositive of neg11d . (Contributed by David Moews, 28-Feb-2017)
|
|
Ref |
Expression |
|
Hypotheses |
negidd.1 |
⊢ ( 𝜑 → 𝐴 ∈ ℂ ) |
|
|
negned.2 |
⊢ ( 𝜑 → 𝐵 ∈ ℂ ) |
|
|
negned.3 |
⊢ ( 𝜑 → 𝐴 ≠ 𝐵 ) |
|
Assertion |
negned |
⊢ ( 𝜑 → - 𝐴 ≠ - 𝐵 ) |
Proof
| Step |
Hyp |
Ref |
Expression |
| 1 |
|
negidd.1 |
⊢ ( 𝜑 → 𝐴 ∈ ℂ ) |
| 2 |
|
negned.2 |
⊢ ( 𝜑 → 𝐵 ∈ ℂ ) |
| 3 |
|
negned.3 |
⊢ ( 𝜑 → 𝐴 ≠ 𝐵 ) |
| 4 |
1 2
|
neg11ad |
⊢ ( 𝜑 → ( - 𝐴 = - 𝐵 ↔ 𝐴 = 𝐵 ) ) |
| 5 |
4
|
necon3bid |
⊢ ( 𝜑 → ( - 𝐴 ≠ - 𝐵 ↔ 𝐴 ≠ 𝐵 ) ) |
| 6 |
3 5
|
mpbird |
⊢ ( 𝜑 → - 𝐴 ≠ - 𝐵 ) |