Metamath Proof Explorer


Theorem negslem1

Description: An equivalence between identically restricted order-reversing self-isometries. (Contributed by RP, 30-Sep-2024)

Ref Expression
Assertion negslem1 ( 𝐴 = 𝐵 → ( ( 𝐹𝐴 ) Isom 𝑅 , 𝑅 ( 𝐴 , 𝐴 ) ↔ ( 𝐹𝐵 ) Isom 𝑅 , 𝑅 ( 𝐵 , 𝐵 ) ) )

Proof

Step Hyp Ref Expression
1 id ( 𝐴 = 𝐵𝐴 = 𝐵 )
2 1 1 resisoeq45d ( 𝐴 = 𝐵 → ( ( 𝐹𝐴 ) Isom 𝑅 , 𝑅 ( 𝐴 , 𝐴 ) ↔ ( 𝐹𝐵 ) Isom 𝑅 , 𝑅 ( 𝐵 , 𝐵 ) ) )