Metamath Proof Explorer


Theorem resisoeq45d

Description: Equality deduction for equally restricted isometries. (Contributed by RP, 14-Jan-2025)

Ref Expression
Hypotheses resisoeq45.4 ( 𝜑𝐴 = 𝐶 )
resisoeq45.5 ( 𝜑𝐵 = 𝐷 )
Assertion resisoeq45d ( 𝜑 → ( ( 𝐹𝐴 ) Isom 𝑅 , 𝑆 ( 𝐴 , 𝐵 ) ↔ ( 𝐹𝐶 ) Isom 𝑅 , 𝑆 ( 𝐶 , 𝐷 ) ) )

Proof

Step Hyp Ref Expression
1 resisoeq45.4 ( 𝜑𝐴 = 𝐶 )
2 resisoeq45.5 ( 𝜑𝐵 = 𝐷 )
3 1 reseq2d ( 𝜑 → ( 𝐹𝐴 ) = ( 𝐹𝐶 ) )
4 3 1 2 isoeq145d ( 𝜑 → ( ( 𝐹𝐴 ) Isom 𝑅 , 𝑆 ( 𝐴 , 𝐵 ) ↔ ( 𝐹𝐶 ) Isom 𝑅 , 𝑆 ( 𝐶 , 𝐷 ) ) )