| Step |
Hyp |
Ref |
Expression |
| 1 |
|
isoeq145.1 |
⊢ ( 𝜑 → 𝐹 = 𝐺 ) |
| 2 |
|
isoeq145.4 |
⊢ ( 𝜑 → 𝐴 = 𝐶 ) |
| 3 |
|
isoeq145.5 |
⊢ ( 𝜑 → 𝐵 = 𝐷 ) |
| 4 |
|
isoeq1 |
⊢ ( 𝐹 = 𝐺 → ( 𝐹 Isom 𝑅 , 𝑆 ( 𝐴 , 𝐵 ) ↔ 𝐺 Isom 𝑅 , 𝑆 ( 𝐴 , 𝐵 ) ) ) |
| 5 |
1 4
|
syl |
⊢ ( 𝜑 → ( 𝐹 Isom 𝑅 , 𝑆 ( 𝐴 , 𝐵 ) ↔ 𝐺 Isom 𝑅 , 𝑆 ( 𝐴 , 𝐵 ) ) ) |
| 6 |
|
isoeq4 |
⊢ ( 𝐴 = 𝐶 → ( 𝐺 Isom 𝑅 , 𝑆 ( 𝐴 , 𝐵 ) ↔ 𝐺 Isom 𝑅 , 𝑆 ( 𝐶 , 𝐵 ) ) ) |
| 7 |
2 6
|
syl |
⊢ ( 𝜑 → ( 𝐺 Isom 𝑅 , 𝑆 ( 𝐴 , 𝐵 ) ↔ 𝐺 Isom 𝑅 , 𝑆 ( 𝐶 , 𝐵 ) ) ) |
| 8 |
|
isoeq5 |
⊢ ( 𝐵 = 𝐷 → ( 𝐺 Isom 𝑅 , 𝑆 ( 𝐶 , 𝐵 ) ↔ 𝐺 Isom 𝑅 , 𝑆 ( 𝐶 , 𝐷 ) ) ) |
| 9 |
3 8
|
syl |
⊢ ( 𝜑 → ( 𝐺 Isom 𝑅 , 𝑆 ( 𝐶 , 𝐵 ) ↔ 𝐺 Isom 𝑅 , 𝑆 ( 𝐶 , 𝐷 ) ) ) |
| 10 |
5 7 9
|
3bitrd |
⊢ ( 𝜑 → ( 𝐹 Isom 𝑅 , 𝑆 ( 𝐴 , 𝐵 ) ↔ 𝐺 Isom 𝑅 , 𝑆 ( 𝐶 , 𝐷 ) ) ) |