Database
SUPPLEMENTARY MATERIAL (USERS' MATHBOXES)
Mathbox for Richard Penner
Surreal Contributions
isoeq145d
Next ⟩
resisoeq45d
Metamath Proof Explorer
Ascii
Unicode
Theorem
isoeq145d
Description:
Equality deduction for isometries.
(Contributed by
RP
, 14-Jan-2025)
Ref
Expression
Hypotheses
isoeq145.1
⊢
φ
→
F
=
G
isoeq145.4
⊢
φ
→
A
=
C
isoeq145.5
⊢
φ
→
B
=
D
Assertion
isoeq145d
⊢
φ
→
F
Isom
R
,
S
A
B
↔
G
Isom
R
,
S
C
D
Proof
Step
Hyp
Ref
Expression
1
isoeq145.1
⊢
φ
→
F
=
G
2
isoeq145.4
⊢
φ
→
A
=
C
3
isoeq145.5
⊢
φ
→
B
=
D
4
isoeq1
⊢
F
=
G
→
F
Isom
R
,
S
A
B
↔
G
Isom
R
,
S
A
B
5
1
4
syl
⊢
φ
→
F
Isom
R
,
S
A
B
↔
G
Isom
R
,
S
A
B
6
isoeq4
⊢
A
=
C
→
G
Isom
R
,
S
A
B
↔
G
Isom
R
,
S
C
B
7
2
6
syl
⊢
φ
→
G
Isom
R
,
S
A
B
↔
G
Isom
R
,
S
C
B
8
isoeq5
⊢
B
=
D
→
G
Isom
R
,
S
C
B
↔
G
Isom
R
,
S
C
D
9
3
8
syl
⊢
φ
→
G
Isom
R
,
S
C
B
↔
G
Isom
R
,
S
C
D
10
5
7
9
3bitrd
⊢
φ
→
F
Isom
R
,
S
A
B
↔
G
Isom
R
,
S
C
D