Metamath Proof Explorer


Theorem isoeq145d

Description: Equality deduction for isometries. (Contributed by RP, 14-Jan-2025)

Ref Expression
Hypotheses isoeq145.1 φ F = G
isoeq145.4 φ A = C
isoeq145.5 φ B = D
Assertion isoeq145d φ F Isom R , S A B G Isom R , S C D

Proof

Step Hyp Ref Expression
1 isoeq145.1 φ F = G
2 isoeq145.4 φ A = C
3 isoeq145.5 φ B = D
4 isoeq1 F = G F Isom R , S A B G Isom R , S A B
5 1 4 syl φ F Isom R , S A B G Isom R , S A B
6 isoeq4 A = C G Isom R , S A B G Isom R , S C B
7 2 6 syl φ G Isom R , S A B G Isom R , S C B
8 isoeq5 B = D G Isom R , S C B G Isom R , S C D
9 3 8 syl φ G Isom R , S C B G Isom R , S C D
10 5 7 9 3bitrd φ F Isom R , S A B G Isom R , S C D