Metamath Proof Explorer


Theorem resisoeq45d

Description: Equality deduction for equally restricted isometries. (Contributed by RP, 14-Jan-2025)

Ref Expression
Hypotheses resisoeq45.4 φ A = C
resisoeq45.5 φ B = D
Assertion resisoeq45d φ F A Isom R , S A B F C Isom R , S C D

Proof

Step Hyp Ref Expression
1 resisoeq45.4 φ A = C
2 resisoeq45.5 φ B = D
3 1 reseq2d φ F A = F C
4 3 1 2 isoeq145d φ F A Isom R , S A B F C Isom R , S C D