Description: Equality deduction for equally restricted isometries. (Contributed by RP, 14-Jan-2025)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | resisoeq45.4 | |- ( ph -> A = C ) |
|
| resisoeq45.5 | |- ( ph -> B = D ) |
||
| Assertion | resisoeq45d | |- ( ph -> ( ( F |` A ) Isom R , S ( A , B ) <-> ( F |` C ) Isom R , S ( C , D ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | resisoeq45.4 | |- ( ph -> A = C ) |
|
| 2 | resisoeq45.5 | |- ( ph -> B = D ) |
|
| 3 | 1 | reseq2d | |- ( ph -> ( F |` A ) = ( F |` C ) ) |
| 4 | 3 1 2 | isoeq145d | |- ( ph -> ( ( F |` A ) Isom R , S ( A , B ) <-> ( F |` C ) Isom R , S ( C , D ) ) ) |