Metamath Proof Explorer


Theorem resisoeq45d

Description: Equality deduction for equally restricted isometries. (Contributed by RP, 14-Jan-2025)

Ref Expression
Hypotheses resisoeq45.4
|- ( ph -> A = C )
resisoeq45.5
|- ( ph -> B = D )
Assertion resisoeq45d
|- ( ph -> ( ( F |` A ) Isom R , S ( A , B ) <-> ( F |` C ) Isom R , S ( C , D ) ) )

Proof

Step Hyp Ref Expression
1 resisoeq45.4
 |-  ( ph -> A = C )
2 resisoeq45.5
 |-  ( ph -> B = D )
3 1 reseq2d
 |-  ( ph -> ( F |` A ) = ( F |` C ) )
4 3 1 2 isoeq145d
 |-  ( ph -> ( ( F |` A ) Isom R , S ( A , B ) <-> ( F |` C ) Isom R , S ( C , D ) ) )