Step |
Hyp |
Ref |
Expression |
1 |
|
isoeq145.1 |
|- ( ph -> F = G ) |
2 |
|
isoeq145.4 |
|- ( ph -> A = C ) |
3 |
|
isoeq145.5 |
|- ( ph -> B = D ) |
4 |
|
isoeq1 |
|- ( F = G -> ( F Isom R , S ( A , B ) <-> G Isom R , S ( A , B ) ) ) |
5 |
1 4
|
syl |
|- ( ph -> ( F Isom R , S ( A , B ) <-> G Isom R , S ( A , B ) ) ) |
6 |
|
isoeq4 |
|- ( A = C -> ( G Isom R , S ( A , B ) <-> G Isom R , S ( C , B ) ) ) |
7 |
2 6
|
syl |
|- ( ph -> ( G Isom R , S ( A , B ) <-> G Isom R , S ( C , B ) ) ) |
8 |
|
isoeq5 |
|- ( B = D -> ( G Isom R , S ( C , B ) <-> G Isom R , S ( C , D ) ) ) |
9 |
3 8
|
syl |
|- ( ph -> ( G Isom R , S ( C , B ) <-> G Isom R , S ( C , D ) ) ) |
10 |
5 7 9
|
3bitrd |
|- ( ph -> ( F Isom R , S ( A , B ) <-> G Isom R , S ( C , D ) ) ) |