Metamath Proof Explorer


Theorem isoeq145d

Description: Equality deduction for isometries. (Contributed by RP, 14-Jan-2025)

Ref Expression
Hypotheses isoeq145.1
|- ( ph -> F = G )
isoeq145.4
|- ( ph -> A = C )
isoeq145.5
|- ( ph -> B = D )
Assertion isoeq145d
|- ( ph -> ( F Isom R , S ( A , B ) <-> G Isom R , S ( C , D ) ) )

Proof

Step Hyp Ref Expression
1 isoeq145.1
 |-  ( ph -> F = G )
2 isoeq145.4
 |-  ( ph -> A = C )
3 isoeq145.5
 |-  ( ph -> B = D )
4 isoeq1
 |-  ( F = G -> ( F Isom R , S ( A , B ) <-> G Isom R , S ( A , B ) ) )
5 1 4 syl
 |-  ( ph -> ( F Isom R , S ( A , B ) <-> G Isom R , S ( A , B ) ) )
6 isoeq4
 |-  ( A = C -> ( G Isom R , S ( A , B ) <-> G Isom R , S ( C , B ) ) )
7 2 6 syl
 |-  ( ph -> ( G Isom R , S ( A , B ) <-> G Isom R , S ( C , B ) ) )
8 isoeq5
 |-  ( B = D -> ( G Isom R , S ( C , B ) <-> G Isom R , S ( C , D ) ) )
9 3 8 syl
 |-  ( ph -> ( G Isom R , S ( C , B ) <-> G Isom R , S ( C , D ) ) )
10 5 7 9 3bitrd
 |-  ( ph -> ( F Isom R , S ( A , B ) <-> G Isom R , S ( C , D ) ) )