| Step |
Hyp |
Ref |
Expression |
| 1 |
|
isoeq145.1 |
|- ( ph -> F = G ) |
| 2 |
|
isoeq145.4 |
|- ( ph -> A = C ) |
| 3 |
|
isoeq145.5 |
|- ( ph -> B = D ) |
| 4 |
|
isoeq1 |
|- ( F = G -> ( F Isom R , S ( A , B ) <-> G Isom R , S ( A , B ) ) ) |
| 5 |
1 4
|
syl |
|- ( ph -> ( F Isom R , S ( A , B ) <-> G Isom R , S ( A , B ) ) ) |
| 6 |
|
isoeq4 |
|- ( A = C -> ( G Isom R , S ( A , B ) <-> G Isom R , S ( C , B ) ) ) |
| 7 |
2 6
|
syl |
|- ( ph -> ( G Isom R , S ( A , B ) <-> G Isom R , S ( C , B ) ) ) |
| 8 |
|
isoeq5 |
|- ( B = D -> ( G Isom R , S ( C , B ) <-> G Isom R , S ( C , D ) ) ) |
| 9 |
3 8
|
syl |
|- ( ph -> ( G Isom R , S ( C , B ) <-> G Isom R , S ( C , D ) ) ) |
| 10 |
5 7 9
|
3bitrd |
|- ( ph -> ( F Isom R , S ( A , B ) <-> G Isom R , S ( C , D ) ) ) |