Description: If two classes are different, a third class must be different of at least one of them. (Contributed by Thierry Arnoux, 8-Aug-2020)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | neneor | ⊢ ( 𝐴 ≠ 𝐵 → ( 𝐴 ≠ 𝐶 ∨ 𝐵 ≠ 𝐶 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqtr3 | ⊢ ( ( 𝐴 = 𝐶 ∧ 𝐵 = 𝐶 ) → 𝐴 = 𝐵 ) | |
| 2 | 1 | necon3ai | ⊢ ( 𝐴 ≠ 𝐵 → ¬ ( 𝐴 = 𝐶 ∧ 𝐵 = 𝐶 ) ) |
| 3 | neorian | ⊢ ( ( 𝐴 ≠ 𝐶 ∨ 𝐵 ≠ 𝐶 ) ↔ ¬ ( 𝐴 = 𝐶 ∧ 𝐵 = 𝐶 ) ) | |
| 4 | 2 3 | sylibr | ⊢ ( 𝐴 ≠ 𝐵 → ( 𝐴 ≠ 𝐶 ∨ 𝐵 ≠ 𝐶 ) ) |