Metamath Proof Explorer


Theorem nexmo1

Description: If there is no case where wff is true, it is true for at most one case. (Contributed by Peter Mazsa, 27-Sep-2021)

Ref Expression
Assertion nexmo1 ( ¬ ∃ 𝑥 𝜑 → ∃* 𝑥 𝜑 )

Proof

Step Hyp Ref Expression
1 pm2.21 ( ¬ ∃ 𝑥 𝜑 → ( ∃ 𝑥 𝜑 → ∃! 𝑥 𝜑 ) )
2 moeu ( ∃* 𝑥 𝜑 ↔ ( ∃ 𝑥 𝜑 → ∃! 𝑥 𝜑 ) )
3 1 2 sylibr ( ¬ ∃ 𝑥 𝜑 → ∃* 𝑥 𝜑 )