Description: Restricted universal quantification over intersection. (Contributed by Peter Mazsa, 8-Sep-2023)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | ralin | ⊢ ( ∀ 𝑥 ∈ ( 𝐴 ∩ 𝐵 ) 𝜑 ↔ ∀ 𝑥 ∈ 𝐴 ( 𝑥 ∈ 𝐵 → 𝜑 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elin | ⊢ ( 𝑥 ∈ ( 𝐴 ∩ 𝐵 ) ↔ ( 𝑥 ∈ 𝐴 ∧ 𝑥 ∈ 𝐵 ) ) | |
| 2 | 1 | imbi1i | ⊢ ( ( 𝑥 ∈ ( 𝐴 ∩ 𝐵 ) → 𝜑 ) ↔ ( ( 𝑥 ∈ 𝐴 ∧ 𝑥 ∈ 𝐵 ) → 𝜑 ) ) |
| 3 | impexp | ⊢ ( ( ( 𝑥 ∈ 𝐴 ∧ 𝑥 ∈ 𝐵 ) → 𝜑 ) ↔ ( 𝑥 ∈ 𝐴 → ( 𝑥 ∈ 𝐵 → 𝜑 ) ) ) | |
| 4 | 2 3 | bitri | ⊢ ( ( 𝑥 ∈ ( 𝐴 ∩ 𝐵 ) → 𝜑 ) ↔ ( 𝑥 ∈ 𝐴 → ( 𝑥 ∈ 𝐵 → 𝜑 ) ) ) |
| 5 | 4 | ralbii2 | ⊢ ( ∀ 𝑥 ∈ ( 𝐴 ∩ 𝐵 ) 𝜑 ↔ ∀ 𝑥 ∈ 𝐴 ( 𝑥 ∈ 𝐵 → 𝜑 ) ) |