Metamath Proof Explorer
		
		
		Theorem nf5
		Description:  Alternate definition of df-nf .  (Contributed by Mario Carneiro, 11-Aug-2016) df-nf changed.  (Revised by Wolf Lammen, 11-Sep-2021)
		
			
				
					|  |  | Ref | Expression | 
				
					|  | Assertion | nf5 | ⊢  ( Ⅎ 𝑥 𝜑  ↔  ∀ 𝑥 ( 𝜑  →  ∀ 𝑥 𝜑 ) ) | 
			
		
		
			
				Proof
				
					
						| Step | Hyp | Ref | Expression | 
						
							| 1 |  | df-nf | ⊢ ( Ⅎ 𝑥 𝜑  ↔  ( ∃ 𝑥 𝜑  →  ∀ 𝑥 𝜑 ) ) | 
						
							| 2 |  | nfa1 | ⊢ Ⅎ 𝑥 ∀ 𝑥 𝜑 | 
						
							| 3 | 2 | 19.23 | ⊢ ( ∀ 𝑥 ( 𝜑  →  ∀ 𝑥 𝜑 )  ↔  ( ∃ 𝑥 𝜑  →  ∀ 𝑥 𝜑 ) ) | 
						
							| 4 | 1 3 | bitr4i | ⊢ ( Ⅎ 𝑥 𝜑  ↔  ∀ 𝑥 ( 𝜑  →  ∀ 𝑥 𝜑 ) ) |