Metamath Proof Explorer
Theorem nf5
Description: Alternate definition of df-nf . (Contributed by Mario Carneiro, 11-Aug-2016) df-nf changed. (Revised by Wolf Lammen, 11-Sep-2021)
|
|
Ref |
Expression |
|
Assertion |
nf5 |
⊢ ( Ⅎ 𝑥 𝜑 ↔ ∀ 𝑥 ( 𝜑 → ∀ 𝑥 𝜑 ) ) |
Proof
Step |
Hyp |
Ref |
Expression |
1 |
|
df-nf |
⊢ ( Ⅎ 𝑥 𝜑 ↔ ( ∃ 𝑥 𝜑 → ∀ 𝑥 𝜑 ) ) |
2 |
|
nfa1 |
⊢ Ⅎ 𝑥 ∀ 𝑥 𝜑 |
3 |
2
|
19.23 |
⊢ ( ∀ 𝑥 ( 𝜑 → ∀ 𝑥 𝜑 ) ↔ ( ∃ 𝑥 𝜑 → ∀ 𝑥 𝜑 ) ) |
4 |
1 3
|
bitr4i |
⊢ ( Ⅎ 𝑥 𝜑 ↔ ∀ 𝑥 ( 𝜑 → ∀ 𝑥 𝜑 ) ) |