Metamath Proof Explorer


Theorem nf5

Description: Alternate definition of df-nf . (Contributed by Mario Carneiro, 11-Aug-2016) df-nf changed. (Revised by Wolf Lammen, 11-Sep-2021)

Ref Expression
Assertion nf5 ( Ⅎ 𝑥 𝜑 ↔ ∀ 𝑥 ( 𝜑 → ∀ 𝑥 𝜑 ) )

Proof

Step Hyp Ref Expression
1 df-nf ( Ⅎ 𝑥 𝜑 ↔ ( ∃ 𝑥 𝜑 → ∀ 𝑥 𝜑 ) )
2 nfa1 𝑥𝑥 𝜑
3 2 19.23 ( ∀ 𝑥 ( 𝜑 → ∀ 𝑥 𝜑 ) ↔ ( ∃ 𝑥 𝜑 → ∀ 𝑥 𝜑 ) )
4 1 3 bitr4i ( Ⅎ 𝑥 𝜑 ↔ ∀ 𝑥 ( 𝜑 → ∀ 𝑥 𝜑 ) )