Metamath Proof Explorer
Description: A utility lemma to transfer a bound-variable hypothesis builder into a
definition. (Contributed by NM, 19-Nov-2020)
|
|
Ref |
Expression |
|
Hypotheses |
nfcxfrdf.0 |
⊢ Ⅎ 𝑥 𝜑 |
|
|
nfcxfrdf.1 |
⊢ ( 𝜑 → 𝐴 = 𝐵 ) |
|
|
nfcxfrdf.2 |
⊢ ( 𝜑 → Ⅎ 𝑥 𝐵 ) |
|
Assertion |
nfcxfrdf |
⊢ ( 𝜑 → Ⅎ 𝑥 𝐴 ) |
Proof
| Step |
Hyp |
Ref |
Expression |
| 1 |
|
nfcxfrdf.0 |
⊢ Ⅎ 𝑥 𝜑 |
| 2 |
|
nfcxfrdf.1 |
⊢ ( 𝜑 → 𝐴 = 𝐵 ) |
| 3 |
|
nfcxfrdf.2 |
⊢ ( 𝜑 → Ⅎ 𝑥 𝐵 ) |
| 4 |
1 2
|
nfceqdf |
⊢ ( 𝜑 → ( Ⅎ 𝑥 𝐴 ↔ Ⅎ 𝑥 𝐵 ) ) |
| 5 |
3 4
|
mpbird |
⊢ ( 𝜑 → Ⅎ 𝑥 𝐴 ) |