Metamath Proof Explorer


Theorem nfcxfrdf

Description: A utility lemma to transfer a bound-variable hypothesis builder into a definition. (Contributed by NM, 19-Nov-2020)

Ref Expression
Hypotheses nfcxfrdf.0 𝑥 𝜑
nfcxfrdf.1 ( 𝜑𝐴 = 𝐵 )
nfcxfrdf.2 ( 𝜑 𝑥 𝐵 )
Assertion nfcxfrdf ( 𝜑 𝑥 𝐴 )

Proof

Step Hyp Ref Expression
1 nfcxfrdf.0 𝑥 𝜑
2 nfcxfrdf.1 ( 𝜑𝐴 = 𝐵 )
3 nfcxfrdf.2 ( 𝜑 𝑥 𝐵 )
4 1 2 nfceqdf ( 𝜑 → ( 𝑥 𝐴 𝑥 𝐵 ) )
5 3 4 mpbird ( 𝜑 𝑥 𝐴 )