Metamath Proof Explorer


Theorem nfcxfrdf

Description: A utility lemma to transfer a bound-variable hypothesis builder into a definition. (Contributed by NM, 19-Nov-2020)

Ref Expression
Hypotheses nfcxfrdf.0 x φ
nfcxfrdf.1 φ A = B
nfcxfrdf.2 φ _ x B
Assertion nfcxfrdf φ _ x A

Proof

Step Hyp Ref Expression
1 nfcxfrdf.0 x φ
2 nfcxfrdf.1 φ A = B
3 nfcxfrdf.2 φ _ x B
4 1 2 nfceqdf φ _ x A _ x B
5 3 4 mpbird φ _ x A