Metamath Proof Explorer


Theorem nfovd

Description: Deduction version of bound-variable hypothesis builder nfov . (Contributed by NM, 13-Dec-2005) (Proof shortened by Andrew Salmon, 22-Oct-2011)

Ref Expression
Hypotheses nfovd.2 ( 𝜑 𝑥 𝐴 )
nfovd.3 ( 𝜑 𝑥 𝐹 )
nfovd.4 ( 𝜑 𝑥 𝐵 )
Assertion nfovd ( 𝜑 𝑥 ( 𝐴 𝐹 𝐵 ) )

Proof

Step Hyp Ref Expression
1 nfovd.2 ( 𝜑 𝑥 𝐴 )
2 nfovd.3 ( 𝜑 𝑥 𝐹 )
3 nfovd.4 ( 𝜑 𝑥 𝐵 )
4 df-ov ( 𝐴 𝐹 𝐵 ) = ( 𝐹 ‘ ⟨ 𝐴 , 𝐵 ⟩ )
5 1 3 nfopd ( 𝜑 𝑥𝐴 , 𝐵 ⟩ )
6 2 5 nffvd ( 𝜑 𝑥 ( 𝐹 ‘ ⟨ 𝐴 , 𝐵 ⟩ ) )
7 4 6 nfcxfrd ( 𝜑 𝑥 ( 𝐴 𝐹 𝐵 ) )