Metamath Proof Explorer
		
		
		
		Description:  Consequence of the definition of not-free.  (Contributed by Wolf Lammen, 16-Sep-2021)
		
			
				
					|  |  | Ref | Expression | 
					
						|  | Hypothesis | nfri.1 | ⊢ Ⅎ 𝑥 𝜑 | 
				
					|  | Assertion | nfri | ⊢  ( ∃ 𝑥 𝜑  →  ∀ 𝑥 𝜑 ) | 
			
		
		
			
				Proof
				
					
						| Step | Hyp | Ref | Expression | 
						
							| 1 |  | nfri.1 | ⊢ Ⅎ 𝑥 𝜑 | 
						
							| 2 |  | df-nf | ⊢ ( Ⅎ 𝑥 𝜑  ↔  ( ∃ 𝑥 𝜑  →  ∀ 𝑥 𝜑 ) ) | 
						
							| 3 | 1 2 | mpbi | ⊢ ( ∃ 𝑥 𝜑  →  ∀ 𝑥 𝜑 ) |