Metamath Proof Explorer


Theorem nfttrcl

Description: Bound variable hypothesis builder for transitive closure. (Contributed by Scott Fenton, 17-Oct-2024)

Ref Expression
Hypothesis nfttrcl.1 𝑥 𝑅
Assertion nfttrcl 𝑥 t++ 𝑅

Proof

Step Hyp Ref Expression
1 nfttrcl.1 𝑥 𝑅
2 1 a1i ( ⊤ → 𝑥 𝑅 )
3 2 nfttrcld ( ⊤ → 𝑥 t++ 𝑅 )
4 3 mptru 𝑥 t++ 𝑅