Metamath Proof Explorer


Theorem nfttrcld

Description: Bound variable hypothesis builder for transitive closure. Deduction form. (Contributed by Scott Fenton, 26-Oct-2024)

Ref Expression
Hypothesis nfttrcld.1 ( 𝜑 𝑥 𝑅 )
Assertion nfttrcld ( 𝜑 𝑥 t++ 𝑅 )

Proof

Step Hyp Ref Expression
1 nfttrcld.1 ( 𝜑 𝑥 𝑅 )
2 df-ttrcl t++ 𝑅 = { ⟨ 𝑦 , 𝑧 ⟩ ∣ ∃ 𝑛 ∈ ( ω ∖ 1o ) ∃ 𝑓 ( 𝑓 Fn suc 𝑛 ∧ ( ( 𝑓 ‘ ∅ ) = 𝑦 ∧ ( 𝑓𝑛 ) = 𝑧 ) ∧ ∀ 𝑎𝑛 ( 𝑓𝑎 ) 𝑅 ( 𝑓 ‘ suc 𝑎 ) ) }
3 nfv 𝑦 𝜑
4 nfv 𝑧 𝜑
5 nfv 𝑛 𝜑
6 nfcvd ( 𝜑 𝑥 ( ω ∖ 1o ) )
7 nfv 𝑓 𝜑
8 nfvd ( 𝜑 → Ⅎ 𝑥 𝑓 Fn suc 𝑛 )
9 nfvd ( 𝜑 → Ⅎ 𝑥 ( ( 𝑓 ‘ ∅ ) = 𝑦 ∧ ( 𝑓𝑛 ) = 𝑧 ) )
10 nfv 𝑎 𝜑
11 nfcvd ( 𝜑 𝑥 𝑛 )
12 nfcvd ( 𝜑 𝑥 ( 𝑓𝑎 ) )
13 nfcvd ( 𝜑 𝑥 ( 𝑓 ‘ suc 𝑎 ) )
14 12 1 13 nfbrd ( 𝜑 → Ⅎ 𝑥 ( 𝑓𝑎 ) 𝑅 ( 𝑓 ‘ suc 𝑎 ) )
15 10 11 14 nfraldw ( 𝜑 → Ⅎ 𝑥𝑎𝑛 ( 𝑓𝑎 ) 𝑅 ( 𝑓 ‘ suc 𝑎 ) )
16 8 9 15 nf3and ( 𝜑 → Ⅎ 𝑥 ( 𝑓 Fn suc 𝑛 ∧ ( ( 𝑓 ‘ ∅ ) = 𝑦 ∧ ( 𝑓𝑛 ) = 𝑧 ) ∧ ∀ 𝑎𝑛 ( 𝑓𝑎 ) 𝑅 ( 𝑓 ‘ suc 𝑎 ) ) )
17 7 16 nfexd ( 𝜑 → Ⅎ 𝑥𝑓 ( 𝑓 Fn suc 𝑛 ∧ ( ( 𝑓 ‘ ∅ ) = 𝑦 ∧ ( 𝑓𝑛 ) = 𝑧 ) ∧ ∀ 𝑎𝑛 ( 𝑓𝑎 ) 𝑅 ( 𝑓 ‘ suc 𝑎 ) ) )
18 5 6 17 nfrexd ( 𝜑 → Ⅎ 𝑥𝑛 ∈ ( ω ∖ 1o ) ∃ 𝑓 ( 𝑓 Fn suc 𝑛 ∧ ( ( 𝑓 ‘ ∅ ) = 𝑦 ∧ ( 𝑓𝑛 ) = 𝑧 ) ∧ ∀ 𝑎𝑛 ( 𝑓𝑎 ) 𝑅 ( 𝑓 ‘ suc 𝑎 ) ) )
19 3 4 18 nfopabd ( 𝜑 𝑥 { ⟨ 𝑦 , 𝑧 ⟩ ∣ ∃ 𝑛 ∈ ( ω ∖ 1o ) ∃ 𝑓 ( 𝑓 Fn suc 𝑛 ∧ ( ( 𝑓 ‘ ∅ ) = 𝑦 ∧ ( 𝑓𝑛 ) = 𝑧 ) ∧ ∀ 𝑎𝑛 ( 𝑓𝑎 ) 𝑅 ( 𝑓 ‘ suc 𝑎 ) ) } )
20 2 19 nfcxfrd ( 𝜑 𝑥 t++ 𝑅 )