Step |
Hyp |
Ref |
Expression |
1 |
|
nfttrcld.1 |
⊢ ( 𝜑 → Ⅎ 𝑥 𝑅 ) |
2 |
|
df-ttrcl |
⊢ t++ 𝑅 = { 〈 𝑦 , 𝑧 〉 ∣ ∃ 𝑛 ∈ ( ω ∖ 1o ) ∃ 𝑓 ( 𝑓 Fn suc 𝑛 ∧ ( ( 𝑓 ‘ ∅ ) = 𝑦 ∧ ( 𝑓 ‘ 𝑛 ) = 𝑧 ) ∧ ∀ 𝑎 ∈ 𝑛 ( 𝑓 ‘ 𝑎 ) 𝑅 ( 𝑓 ‘ suc 𝑎 ) ) } |
3 |
|
nfv |
⊢ Ⅎ 𝑦 𝜑 |
4 |
|
nfv |
⊢ Ⅎ 𝑧 𝜑 |
5 |
|
nfv |
⊢ Ⅎ 𝑛 𝜑 |
6 |
|
nfcvd |
⊢ ( 𝜑 → Ⅎ 𝑥 ( ω ∖ 1o ) ) |
7 |
|
nfv |
⊢ Ⅎ 𝑓 𝜑 |
8 |
|
nfvd |
⊢ ( 𝜑 → Ⅎ 𝑥 𝑓 Fn suc 𝑛 ) |
9 |
|
nfvd |
⊢ ( 𝜑 → Ⅎ 𝑥 ( ( 𝑓 ‘ ∅ ) = 𝑦 ∧ ( 𝑓 ‘ 𝑛 ) = 𝑧 ) ) |
10 |
|
nfv |
⊢ Ⅎ 𝑎 𝜑 |
11 |
|
nfcvd |
⊢ ( 𝜑 → Ⅎ 𝑥 𝑛 ) |
12 |
|
nfcvd |
⊢ ( 𝜑 → Ⅎ 𝑥 ( 𝑓 ‘ 𝑎 ) ) |
13 |
|
nfcvd |
⊢ ( 𝜑 → Ⅎ 𝑥 ( 𝑓 ‘ suc 𝑎 ) ) |
14 |
12 1 13
|
nfbrd |
⊢ ( 𝜑 → Ⅎ 𝑥 ( 𝑓 ‘ 𝑎 ) 𝑅 ( 𝑓 ‘ suc 𝑎 ) ) |
15 |
10 11 14
|
nfraldw |
⊢ ( 𝜑 → Ⅎ 𝑥 ∀ 𝑎 ∈ 𝑛 ( 𝑓 ‘ 𝑎 ) 𝑅 ( 𝑓 ‘ suc 𝑎 ) ) |
16 |
8 9 15
|
nf3and |
⊢ ( 𝜑 → Ⅎ 𝑥 ( 𝑓 Fn suc 𝑛 ∧ ( ( 𝑓 ‘ ∅ ) = 𝑦 ∧ ( 𝑓 ‘ 𝑛 ) = 𝑧 ) ∧ ∀ 𝑎 ∈ 𝑛 ( 𝑓 ‘ 𝑎 ) 𝑅 ( 𝑓 ‘ suc 𝑎 ) ) ) |
17 |
7 16
|
nfexd |
⊢ ( 𝜑 → Ⅎ 𝑥 ∃ 𝑓 ( 𝑓 Fn suc 𝑛 ∧ ( ( 𝑓 ‘ ∅ ) = 𝑦 ∧ ( 𝑓 ‘ 𝑛 ) = 𝑧 ) ∧ ∀ 𝑎 ∈ 𝑛 ( 𝑓 ‘ 𝑎 ) 𝑅 ( 𝑓 ‘ suc 𝑎 ) ) ) |
18 |
5 6 17
|
nfrexd |
⊢ ( 𝜑 → Ⅎ 𝑥 ∃ 𝑛 ∈ ( ω ∖ 1o ) ∃ 𝑓 ( 𝑓 Fn suc 𝑛 ∧ ( ( 𝑓 ‘ ∅ ) = 𝑦 ∧ ( 𝑓 ‘ 𝑛 ) = 𝑧 ) ∧ ∀ 𝑎 ∈ 𝑛 ( 𝑓 ‘ 𝑎 ) 𝑅 ( 𝑓 ‘ suc 𝑎 ) ) ) |
19 |
3 4 18
|
nfopabd |
⊢ ( 𝜑 → Ⅎ 𝑥 { 〈 𝑦 , 𝑧 〉 ∣ ∃ 𝑛 ∈ ( ω ∖ 1o ) ∃ 𝑓 ( 𝑓 Fn suc 𝑛 ∧ ( ( 𝑓 ‘ ∅ ) = 𝑦 ∧ ( 𝑓 ‘ 𝑛 ) = 𝑧 ) ∧ ∀ 𝑎 ∈ 𝑛 ( 𝑓 ‘ 𝑎 ) 𝑅 ( 𝑓 ‘ suc 𝑎 ) ) } ) |
20 |
2 19
|
nfcxfrd |
⊢ ( 𝜑 → Ⅎ 𝑥 t++ 𝑅 ) |