Step |
Hyp |
Ref |
Expression |
1 |
|
nfttrcld.1 |
|- ( ph -> F/_ x R ) |
2 |
|
df-ttrcl |
|- t++ R = { <. y , z >. | E. n e. ( _om \ 1o ) E. f ( f Fn suc n /\ ( ( f ` (/) ) = y /\ ( f ` n ) = z ) /\ A. a e. n ( f ` a ) R ( f ` suc a ) ) } |
3 |
|
nfv |
|- F/ y ph |
4 |
|
nfv |
|- F/ z ph |
5 |
|
nfv |
|- F/ n ph |
6 |
|
nfcvd |
|- ( ph -> F/_ x ( _om \ 1o ) ) |
7 |
|
nfv |
|- F/ f ph |
8 |
|
nfvd |
|- ( ph -> F/ x f Fn suc n ) |
9 |
|
nfvd |
|- ( ph -> F/ x ( ( f ` (/) ) = y /\ ( f ` n ) = z ) ) |
10 |
|
nfv |
|- F/ a ph |
11 |
|
nfcvd |
|- ( ph -> F/_ x n ) |
12 |
|
nfcvd |
|- ( ph -> F/_ x ( f ` a ) ) |
13 |
|
nfcvd |
|- ( ph -> F/_ x ( f ` suc a ) ) |
14 |
12 1 13
|
nfbrd |
|- ( ph -> F/ x ( f ` a ) R ( f ` suc a ) ) |
15 |
10 11 14
|
nfraldw |
|- ( ph -> F/ x A. a e. n ( f ` a ) R ( f ` suc a ) ) |
16 |
8 9 15
|
nf3and |
|- ( ph -> F/ x ( f Fn suc n /\ ( ( f ` (/) ) = y /\ ( f ` n ) = z ) /\ A. a e. n ( f ` a ) R ( f ` suc a ) ) ) |
17 |
7 16
|
nfexd |
|- ( ph -> F/ x E. f ( f Fn suc n /\ ( ( f ` (/) ) = y /\ ( f ` n ) = z ) /\ A. a e. n ( f ` a ) R ( f ` suc a ) ) ) |
18 |
5 6 17
|
nfrexd |
|- ( ph -> F/ x E. n e. ( _om \ 1o ) E. f ( f Fn suc n /\ ( ( f ` (/) ) = y /\ ( f ` n ) = z ) /\ A. a e. n ( f ` a ) R ( f ` suc a ) ) ) |
19 |
3 4 18
|
nfopabd |
|- ( ph -> F/_ x { <. y , z >. | E. n e. ( _om \ 1o ) E. f ( f Fn suc n /\ ( ( f ` (/) ) = y /\ ( f ` n ) = z ) /\ A. a e. n ( f ` a ) R ( f ` suc a ) ) } ) |
20 |
2 19
|
nfcxfrd |
|- ( ph -> F/_ x t++ R ) |