Metamath Proof Explorer
Description: Deduction form of bound-variable hypothesis builder nf3an .
(Contributed by NM, 17-Feb-2013) (Revised by Mario Carneiro, 16-Oct-2016)
|
|
Ref |
Expression |
|
Hypotheses |
nfand.1 |
⊢ ( 𝜑 → Ⅎ 𝑥 𝜓 ) |
|
|
nfand.2 |
⊢ ( 𝜑 → Ⅎ 𝑥 𝜒 ) |
|
|
nfand.3 |
⊢ ( 𝜑 → Ⅎ 𝑥 𝜃 ) |
|
Assertion |
nf3and |
⊢ ( 𝜑 → Ⅎ 𝑥 ( 𝜓 ∧ 𝜒 ∧ 𝜃 ) ) |
Proof
Step |
Hyp |
Ref |
Expression |
1 |
|
nfand.1 |
⊢ ( 𝜑 → Ⅎ 𝑥 𝜓 ) |
2 |
|
nfand.2 |
⊢ ( 𝜑 → Ⅎ 𝑥 𝜒 ) |
3 |
|
nfand.3 |
⊢ ( 𝜑 → Ⅎ 𝑥 𝜃 ) |
4 |
|
df-3an |
⊢ ( ( 𝜓 ∧ 𝜒 ∧ 𝜃 ) ↔ ( ( 𝜓 ∧ 𝜒 ) ∧ 𝜃 ) ) |
5 |
1 2
|
nfand |
⊢ ( 𝜑 → Ⅎ 𝑥 ( 𝜓 ∧ 𝜒 ) ) |
6 |
5 3
|
nfand |
⊢ ( 𝜑 → Ⅎ 𝑥 ( ( 𝜓 ∧ 𝜒 ) ∧ 𝜃 ) ) |
7 |
4 6
|
nfxfrd |
⊢ ( 𝜑 → Ⅎ 𝑥 ( 𝜓 ∧ 𝜒 ∧ 𝜃 ) ) |