Metamath Proof Explorer


Theorem nfunsnafv2

Description: If the restriction of a class to a singleton is not a function, its value at the singleton element is undefined, compare with nfunsn . (Contributed by AV, 2-Sep-2022)

Ref Expression
Assertion nfunsnafv2 ( ¬ Fun ( 𝐹 ↾ { 𝐴 } ) → ( 𝐹 '''' 𝐴 ) ∉ ran 𝐹 )

Proof

Step Hyp Ref Expression
1 olc ( ¬ Fun ( 𝐹 ↾ { 𝐴 } ) → ( ¬ 𝐴 ∈ dom 𝐹 ∨ ¬ Fun ( 𝐹 ↾ { 𝐴 } ) ) )
2 ianor ( ¬ ( 𝐴 ∈ dom 𝐹 ∧ Fun ( 𝐹 ↾ { 𝐴 } ) ) ↔ ( ¬ 𝐴 ∈ dom 𝐹 ∨ ¬ Fun ( 𝐹 ↾ { 𝐴 } ) ) )
3 df-dfat ( 𝐹 defAt 𝐴 ↔ ( 𝐴 ∈ dom 𝐹 ∧ Fun ( 𝐹 ↾ { 𝐴 } ) ) )
4 2 3 xchnxbir ( ¬ 𝐹 defAt 𝐴 ↔ ( ¬ 𝐴 ∈ dom 𝐹 ∨ ¬ Fun ( 𝐹 ↾ { 𝐴 } ) ) )
5 1 4 sylibr ( ¬ Fun ( 𝐹 ↾ { 𝐴 } ) → ¬ 𝐹 defAt 𝐴 )
6 ndfatafv2nrn ( ¬ 𝐹 defAt 𝐴 → ( 𝐹 '''' 𝐴 ) ∉ ran 𝐹 )
7 5 6 syl ( ¬ Fun ( 𝐹 ↾ { 𝐴 } ) → ( 𝐹 '''' 𝐴 ) ∉ ran 𝐹 )