Metamath Proof Explorer


Theorem nfunsnafv2

Description: If the restriction of a class to a singleton is not a function, its value at the singleton element is undefined, compare with nfunsn . (Contributed by AV, 2-Sep-2022)

Ref Expression
Assertion nfunsnafv2 ¬ Fun F A F '''' A ran F

Proof

Step Hyp Ref Expression
1 olc ¬ Fun F A ¬ A dom F ¬ Fun F A
2 ianor ¬ A dom F Fun F A ¬ A dom F ¬ Fun F A
3 df-dfat F defAt A A dom F Fun F A
4 2 3 xchnxbir ¬ F defAt A ¬ A dom F ¬ Fun F A
5 1 4 sylibr ¬ Fun F A ¬ F defAt A
6 ndfatafv2nrn ¬ F defAt A F '''' A ran F
7 5 6 syl ¬ Fun F A F '''' A ran F