Metamath Proof Explorer
		
		
		
		Description:  Chained inference.  (Contributed by Jeff Hoffman, 17-Nov-2007)
       (Proof modification is discouraged.)  (New usage is discouraged.)
		
			
				
					|  |  | Ref | Expression | 
					
						|  | Hypotheses | nic-ich.1 | ⊢ ( 𝜑  ⊼  ( 𝜓  ⊼  𝜓 ) ) | 
					
						|  |  | nic-ich.2 | ⊢ ( 𝜓  ⊼  ( 𝜒  ⊼  𝜒 ) ) | 
				
					|  | Assertion | nic-ich | ⊢  ( 𝜑  ⊼  ( 𝜒  ⊼  𝜒 ) ) | 
			
		
		
			
				Proof
				
					
						| Step | Hyp | Ref | Expression | 
						
							| 1 |  | nic-ich.1 | ⊢ ( 𝜑  ⊼  ( 𝜓  ⊼  𝜓 ) ) | 
						
							| 2 |  | nic-ich.2 | ⊢ ( 𝜓  ⊼  ( 𝜒  ⊼  𝜒 ) ) | 
						
							| 3 | 2 | nic-isw1 | ⊢ ( ( 𝜒  ⊼  𝜒 )  ⊼  𝜓 ) | 
						
							| 4 | 1 | nic-imp | ⊢ ( ( ( 𝜒  ⊼  𝜒 )  ⊼  𝜓 )  ⊼  ( ( 𝜑  ⊼  ( 𝜒  ⊼  𝜒 ) )  ⊼  ( 𝜑  ⊼  ( 𝜒  ⊼  𝜒 ) ) ) ) | 
						
							| 5 | 3 4 | nic-mp | ⊢ ( 𝜑  ⊼  ( 𝜒  ⊼  𝜒 ) ) |