Metamath Proof Explorer
Description: Chained inference. (Contributed by Jeff Hoffman, 17-Nov-2007)
(Proof modification is discouraged.) (New usage is discouraged.)
|
|
Ref |
Expression |
|
Hypotheses |
nic-ich.1 |
⊢ ( 𝜑 ⊼ ( 𝜓 ⊼ 𝜓 ) ) |
|
|
nic-ich.2 |
⊢ ( 𝜓 ⊼ ( 𝜒 ⊼ 𝜒 ) ) |
|
Assertion |
nic-ich |
⊢ ( 𝜑 ⊼ ( 𝜒 ⊼ 𝜒 ) ) |
Proof
| Step |
Hyp |
Ref |
Expression |
| 1 |
|
nic-ich.1 |
⊢ ( 𝜑 ⊼ ( 𝜓 ⊼ 𝜓 ) ) |
| 2 |
|
nic-ich.2 |
⊢ ( 𝜓 ⊼ ( 𝜒 ⊼ 𝜒 ) ) |
| 3 |
2
|
nic-isw1 |
⊢ ( ( 𝜒 ⊼ 𝜒 ) ⊼ 𝜓 ) |
| 4 |
1
|
nic-imp |
⊢ ( ( ( 𝜒 ⊼ 𝜒 ) ⊼ 𝜓 ) ⊼ ( ( 𝜑 ⊼ ( 𝜒 ⊼ 𝜒 ) ) ⊼ ( 𝜑 ⊼ ( 𝜒 ⊼ 𝜒 ) ) ) ) |
| 5 |
3 4
|
nic-mp |
⊢ ( 𝜑 ⊼ ( 𝜒 ⊼ 𝜒 ) ) |