Metamath Proof Explorer


Theorem nic-ich

Description: Chained inference. (Contributed by Jeff Hoffman, 17-Nov-2007) (Proof modification is discouraged.) (New usage is discouraged.)

Ref Expression
Hypotheses nic-ich.1
|- ( ph -/\ ( ps -/\ ps ) )
nic-ich.2
|- ( ps -/\ ( ch -/\ ch ) )
Assertion nic-ich
|- ( ph -/\ ( ch -/\ ch ) )

Proof

Step Hyp Ref Expression
1 nic-ich.1
 |-  ( ph -/\ ( ps -/\ ps ) )
2 nic-ich.2
 |-  ( ps -/\ ( ch -/\ ch ) )
3 2 nic-isw1
 |-  ( ( ch -/\ ch ) -/\ ps )
4 1 nic-imp
 |-  ( ( ( ch -/\ ch ) -/\ ps ) -/\ ( ( ph -/\ ( ch -/\ ch ) ) -/\ ( ph -/\ ( ch -/\ ch ) ) ) )
5 3 4 nic-mp
 |-  ( ph -/\ ( ch -/\ ch ) )